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Mathematical models are used widely throughout the sciences, and often influence not only

research, but our daily lives. For example, weather prediction is made possible by numerical

weather models that have advanced steadily since computers became widely available in the

1970’s. The improvements in weather models have been so consistent that some researchers

have coined a “Moore’s law” for weather models. In its original formulation, Moore’s law

states that the number of transistors in an integrated circuit such as a CPU approximately

doubles every year. The weather forecasting equivalent states that the accuracy of numerical

weather models improves by ten percent every ten years [291, 181].

Systems biology models do not advance to a steady drumbeat as weather models do. It

can hardly be claimed that a ten year period yields a ten percent universal improvement

in systems biology. In fact, current systems biology models are in many ways more prima-

tive than weather models 1. Systems biology models (especially detailed, mechanistically–

accurate models) are underutilized in synthetic biology and are almost completely absent

from the clinic. This is unfortunate, because systems biology models have the potential to

aid in drug discovery [57], cancer treatment [28, 159, 117], disease biology [227, 307], and

1This can be seen, for example, by looking at the usefulness of multiscale “subgrid” methods in weather
modeling. By comparison, systems biology models struggle to recapitulate biology at a single scale — to
use an analogy, systems biology is stuck at the “grid” phase of modeling. A considerable amount of work
is required to catch up to the equivalent “subgrid” milestone.
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production of biofuels [56, 170, 46].

Why are systems biology models so underutilized, despite considerable advances in com-

puting power and experimental data? There are at least three major factors: difficulty in

model reuse, lack of scalability, and lack of technological advances for simulation. Specifically,

these three factors are due to the following problems:

1. Perhaps more so than any other field, models in systems biology need to be reusable

and reproducible 2. Due to the complexity of biology, no single research team can

specialize in every subsystem of the cell. Therefore, models of cellular subsystems

must be developed, validated, and analyzed by different research teams, and combined

into a single, larger model of the cell. This can only happen if researchers use uniform

standards to store their work, and provide a means for others to reuse and incorporate

their models.

2. As the size of a model increases, so do the resources required to simulate it. This is

not simply an issue of convenience, since fitting a model requires simulating it many

times. The strain on computational resources has caused many groups to use simpler

“constraint–based” modeling approaches. However, this approach trades detail for

performance. Continued advancement of systems biology requires the development of

mechanistically accurate kinetic models, which is currently hampered by scalability

constraints.

3. Finally, despite decades of innovation in computer simulation, kinetic models are still

commonly simulated using 40–year old solvers such as LSODA [231, 124]. It is natu-

ral to ask whether advancements in computer technology could be used to provide a

better approach to simulating models. Indeed, this thesis considers state–of–the–art

specialized silicon hardware specifically designed to simulate kinetic models.

2Chapter 2 clarifies the difference between the terms “reusable” and “reproducible”.
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This thesis seeks to address these factors through technological innovations which enable the

construction of larger, more accurate, and more robust models. This is accomplished through

providing better solutions for encoding and reusing models, providing a scalable solution

for optimizing large, challenging kinetic models, and providing a way to simulate models

on special–purpose hardware. Taken together, these foundational advances in modeling

technology provide a pathway toward building larger, more complex, and more accurate

models.



www.manaraa.com

TABLE OF CONTENTS

Page

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Survey of Modeling Formalisms . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Applications: Models in Medicine / Systems Pharmacology . . . . . . . . . . 28

1.3 Applications: Models in Synthetic Biology . . . . . . . . . . . . . . . . . . . 28

1.4 Parameterizing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Summary of Chapters and Scientific Contributions . . . . . . . . . . . . . . . 36

Chapter 2: A Platform for Reproducible, Dynamical Modeling in Systems Biology 38

2.1 Survey of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Design and Implementation of Tellurium . . . . . . . . . . . . . . . . . . . . 49

2.4 Using Tellurium to Accomplish Advanced Tasks with SED–ML . . . . . . . . 52

2.5 Enabling Web–Based SBML Tools . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Web Compilation of libSBML . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8 Review of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3: Parameter Estimation via the Island Method to Enable Scalable Modeling 75

3.1 Parallelization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Survey of Population–based Algorithms . . . . . . . . . . . . . . . . . . . . . 80

3.3 Description of Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Details of Each Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Scaling Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

i



www.manaraa.com

3.6 Comparison with Distributed Algorithms . . . . . . . . . . . . . . . . . . . . 91

3.7 Hardware Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 4: Accelerated Simulations via Special–Purpose Hardware . . . . . . . . . 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 The Divergence Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Chip Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Shift Registers & Block Parameters . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 SRAM & Network Motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Lumped Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Compiling Gene Regulatory Kinetics . . . . . . . . . . . . . . . . . . . . . . 127

4.9 Higher–Order Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 5: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1 Contributions to Standards Integration . . . . . . . . . . . . . . . . . . . . . 136

5.2 Contributions to Web–based Support for Standards . . . . . . . . . . . . . . 137

5.3 Contributions to Scalable Kinetic Modeling . . . . . . . . . . . . . . . . . . . 137

5.4 Contributions to Simulation Technology . . . . . . . . . . . . . . . . . . . . 138

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Appendix A: List of Software Projects . . . . . . . . . . . . . . . . . . . . . . . . . . 170

ii



www.manaraa.com

LIST OF FIGURES

Figure Number Page

1.1 Glycolysis — An example of a metabolic network. . . . . . . . . . . . . . . . 3

1.2 Diagram of the EGFR pathway. . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Examples of natural and synthetic gene regulatory networks. . . . . . . . . . 9

1.4 Commonly occurring feed–forward loop motifs. . . . . . . . . . . . . . . . . . 10

1.5 Conserved moieties example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Multiple simulation traces of a stochastic model. . . . . . . . . . . . . . . . . 19

1.7 Rule–based model simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Bootstrapping pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Using SBO terms in Tellurium. . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Enhanced readability of standards using Tellurium’s shorthand representation. 55

2.3 Advanced features of SBML/SED–ML COMBINE archives: multiple param-
eter sets and plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Encoding model variants using COMBINE archives . . . . . . . . . . . . . . 60

2.5 Linear and logarithmic PhraSEDML plotting. . . . . . . . . . . . . . . . . . 62

2.6 Testing the shift in regulatory mechanism of mitotic oscillations. . . . . . . . 64

2.7 The libsbmljs compilation process and demo. . . . . . . . . . . . . . . . . . . 70

3.1 A visual depiction of the island method. . . . . . . . . . . . . . . . . . . . . 76

3.2 Island method pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Problems used in the elimination benchmark. . . . . . . . . . . . . . . . . . 78

3.4 Convergence curves for problems B1 (A) and B3 (B) from the BioPreDyn–
Bench suite for various numbers of islands. . . . . . . . . . . . . . . . . . . . 94

3.5 Convergence curves for problem B2 from the BioPreDyn suite. . . . . . . . . 95

3.6 Convergence curves for problem B4 from the BioPreDyn suite. . . . . . . . . 96

3.7 B1 problem best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.8 B1 problem best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.9 B2 problem best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iii



www.manaraa.com

3.10 B2 problem normal probability plots. . . . . . . . . . . . . . . . . . . . . . . 100

3.11 B3 problem best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.12 B3 problem normal probability plots. . . . . . . . . . . . . . . . . . . . . . . 102

3.13 B4 problem best solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.14 B4 problem normal probability plots. . . . . . . . . . . . . . . . . . . . . . . 104

3.15 Quality–of–fit benefit for a fixed computation time. . . . . . . . . . . . . . . 105

4.1 Demonstration of the divergence problem. . . . . . . . . . . . . . . . . . . . 110

4.2 Layout of the cytomorphic chip. . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Block diagram of a reaction unit. . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 A flow diagram for the cytomorphic compiler. . . . . . . . . . . . . . . . . . 114

4.5 Input and output ports for a single block in the cytomorphic chip. . . . . . . 117

4.6 Testing a three–step feed–forward network with the compiler. . . . . . . . . . 119

4.7 Testing a “fan–out” reaction with the compiler. . . . . . . . . . . . . . . . . 120

4.8 Testing a dissociation reaction with the compiler. . . . . . . . . . . . . . . . 121

4.9 Testing a “fan–in” reaction with the compiler. . . . . . . . . . . . . . . . . . 122

4.10 Negative feedback around the circuit for A. . . . . . . . . . . . . . . . . . . 124

4.11 Different margin values and their respective simulations. . . . . . . . . . . . 125

4.12 Pseudocode for the Martin matching algorithm. . . . . . . . . . . . . . . . . 128

4.13 Wiring diagram of the repressilator model. . . . . . . . . . . . . . . . . . . . 130

4.14 Comparison of repressilator model simulations. . . . . . . . . . . . . . . . . . 131

4.15 Compilation of a rule–based MAP kinase model [176, 64]. . . . . . . . . . . . 133

iv



www.manaraa.com

GLOSSARY

CHAPTER 1:

SYSTEMS BIOLOGY: The branch of biology that uses mathematical modeling and quan-
titative data to describe the behavior of large, complex biological systems.

SYNTHETIC BIOLOGY: A field that focuses on combining biology and engineering to pro-
duce novel phenotypes for use in industrial chemical production, medicine, and other
applications. Synthetic biology heavily employs recent advances in molecular cloning,
genome annotation, and occasionally modeling to achieve the desired cellular pheno-
type.

ODE: Ordinary differential equation. An equation or set of equations describing the rate
of change of a set of quantities as a function of the current state of the system. Also
used to refer to biochemical models based on such a formalism. In this work, differential
equations are always first–order.

PDE: Partial differential equation. In systems biology, PDEs are usually used to represent
spatial dependence of processes (such as processes occurring only at the cellular mem-
brane, in the nucleus, or in the vicinity of various organelles or structures). However,
such spatial dependence is rare due to the difficulty of parameterizing and experimen-
tally validating the precise spatial dependency of a process.

STOCHASTIC MODEL: A systems biology model that uses Gillespie’s algorithm [108] to
predict the timing of individual reaction events that involve bond formation / breaking
or binding at the single molecule level, such as elongation of an mRNA transcript or a
single enzyme turnover.

CONSTRAINT–BASED MODEL: A model that specifies reaction fluxes in terms of con-
straints. Solving the set of constraints yields a set of fluxes for the network. Unlike
an ODE or stochastic model, a constraint–based model does not change in time. It is
based on the tacit assumption that the fluxes of all reactions do not change significantly
over time (although variants do exist that explicitly address time dependence [259]).

v



www.manaraa.com

BIOMASS REACTION: A reaction in a constraint–based model that includes all essential
metabolites with coefficients that are assumed to mirror the biomass composition of
the physical cell.

CHEMICAL SPECIES: A chemical compound in a biological model. Examples include
metabolites, mRNA molecules of different genes, and proteins in various states (such
as different phosphoforms, or different states of protein complexes).

BIOCHEMICAL REACTION NETWORK: (or simply “network”). The set M of all chemical
species in a biological system, together with the set of all reactions N , forms a directed
graph with M vertices and N edges. If a particular species is a reactant in a reaction,
then the reaction represents an outgoing edge. If the species is a product, the reaction
is an incoming edge.

SENSITIVITY: The rate of change of an output of a model with respect to an input, which
is usually a parameter or species abundance.

CHAPTER 2:

XML: Extensible markup Language. A hierarchically organized language that evolved
from HTML. Used on the World Wide Web to exchange data in a structured format.
Also used by many of the standard formats described in this thesis.

COMMUNITY STANDARD: A community standard is developed by the community that
uses it (as opposed to a recognized standard body). In other words, it is a self–imposed
standard voluntarily agreed to by members of the community due to the benefits it
provides.

SBML: The Systems Biology Markup Language. An XML–based format that specifies an
ODE or stochastic systems biology model in terms of its chemical species, reactions,
parameters (e.g. on/off constants or Michaelis constants), and possible discrete events
(such as adding a bolus of ligand to a system).

LANGUAGE BINDING: A layer of wrapper code that allows a C++ library to be used by
many scripting languages. It translates function calls in the target scripting language
(such as Python) to C++ function calls.

LIBSBML: A C++ library for reading and writing SBML. libBSML has bindings for many
languages such as Python, Java, and others.

vi
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JSBML: A native Java library for reading and writing SBML. It is independent of libSBML
(i.e. not a language binding).

CELLML: Another XML standard for describing systems biology models. Whereas SBML
is primarily used for molecular–scale mechanistic models, CellML is used to encode
physiological models (such as action potential models of neurons like the Hodgkin-
Huxley model [126]). Unlike SBML, CellML encodes ODEs for quantities instead of
processes.

URI: Uniform Resource Identifier. An identifier that unambiguously points to a specific
resource, usually under a given domain name in the World Wide Web. For example,
the URI http://identifiers.org/biomodels.db/BIOMD0000000012 unambiguously
identifies the BioModels repressilator [88] model. This URI can be entered into a web
browser to retrieve information about the resource, but this is not a general requirement
for URIs.

ONTOLOGY: A database (usually online) that describes relationships between entities
identified by URIs. The purpose of ontologies is to allow systematic interpretation
classification of the biological processes and entities used in models. For example, an
SBML model may contain a reference to adenosine triphosphate (ATP). In this case,
the SBML model should use the URI http://identifiers.org/CHEBI:15422, which
unambiguously points to the term in the ChEBI ontology that represents the substance
“ATP”.

SEMANTIC ANNOTATION: A way of linking elements of a model (SBML or CellML) to
resources in an ontology.

SED–ML: An XML standard that describes how to simulate SBML and CellML mod-
els. This standard is needed in order to reproduce previously published results. For
example, to reproduce a simulation, it is necessary to know the values of all model
parameters, the simulation options, and also what algorithm was used to simulate the
model. SED–ML makes it possible to reproduce previously published results in a fully
automated fashion.

COMBINE ARCHIVE: The proliferation of XML standards such as SBML, CellML, and
SED–ML has created a need to package related files together. SED–ML is particularly
problematic because it references other files using relative paths. A COMBINE archive
is a single file that contains other files, and is used to distribute related files together
in order to avoid problems caused by SED–ML references, mismatches between copies
of files, and generally improve usability of projects using multiple related standards.

vii
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CHAPTER 3:

OBJECTIVE FUNCTION: The function that is to be minimized in an optimization problem.
In this work, it is always a multivariate real–valued function of real variables. A typical
choice for the objective function is the relative root–mean–square deviation (RMSD)
between the predicted values of an ODE model and experimentally measured values.

RELATIVE DEVIATION: (or relative RMSD). The RMSD value of a quantity scaled by the
quantity’s average value. For example, if a model has an RMSD of 10 µM for pyruvate
and 50 µM ATP, whereas the average intracellular concentrations of pyruvate and
ATP are 100 µM and 1 mM respectively, then the respective relative RMSD values
for pyruvate and ATP would be 10/100 = 0.1 and 0.05/1 = 0.05.

DECISION VECTOR: The set of arguments to the objective function. For example, if the
objective function is a function of 12 real variables, the decision vector will have length
12. A solution to an optimization problem is a decision vector that yields a minimum
value when evaluated with the objective function.

ISLAND METHOD: Also known as the “island model.” A means of parallelizing population–
based optimization algorithms by running different algorithms on different nodes in a
computing cluster, and occasionally allowing these algorithms to exchange candidate
solutions.

CHAPTER 4:

INTEGRATED CIRCUIT: A silicon chip designed and fabricated to carry out a specific task.

CYTOMORPHIC CHIP: A special–purpose integrated circuit that uses analog computation
based on current values to simulate a chemical reaction network.

REACTION BLOCK: Each cytomorphic chip contains 20 reaction blocks, which each sim-
ulate a single bimolecular reaction with mass–action kinetics. Multiple reaction blocks
are required to simulate larger reactions, as described in Chapter 4.

CYTOMORPHIC COMPILER: A compiler that translates biochemical models (described
e.g. by an SBML model) into a hardware configuration that can be used to simulate
models on the cytomorphic chip or validate the hardware model via ODE integration.

RATE LAW REDUCTION: The process by which the cytomorphic compiler breaks down
rate laws of lumped processes, such as Michaelis–Menten kinetics, into constituent
mechanistic components, such as separate binding and catalysis steps.

viii
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WIRING DIAGRAM: As part of the compilation process, the cytomorphic compiler gener-
ates a wiring configuration describing the connectivity of input and output ports for
each reaction block. This wiring can be visualized as a diagram. Example configura-
tions are shown in Chapter 4.

ix
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Chapter 1

INTRODUCTION

Mathematical models are used ubiquitously throughout biology. At the atomistic level,

forces due to electrostatic charges and Van der Waals forces (often modeled using the

Lennard–Jones potential) can be used to predict the conformation of biomolecules, drive

molecular dynamics simulations [97], and simulate small molecule docking for drug screening

and design [65]. Still more detailed formalisms, such as density functional theory, incorporate

quantum–mechanical effects into molecular models [319].

At the next level of granularity are network models. Interactions between biomolecules,

such as binding, catalysis, and degradation, give rise to a set of interactions. The interactions

form the edges of the network and the components themselves form the nodes. This network

formalism can be applied to many different types of cellular systems. Networks process

nutrients, generate energy and carbon building blocks, transmit information, and allow the

cell to adapt to different environmental conditions. Cellular networks can be broadly divided

into three categories: metabolic networks, signaling / protein interaction networks, and gene

regulatory networks. Conveniently, all three of these types of networks can be modeled using

the same mathematical formalism, which allows network modeling software to be used for a

wide range of scientific questions.

At still a higher level of granularity are models of multicellular structures and tissues.

Multi–cell models have been used to study processes such as angiogenesis and tumor growth

[293] and even to predict the behavior of entire organs such as the heart [212].

This chapter aims to serve as a brief, high–level introduction to cellular networks, sys-

tems biology, and various methods of modeling. It provides the contextual background for

subsequent chapters, which build on this material to provide new insights and advances. It
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introduces biological network modeling through a number of examples, and examines the

significance, potential impact, and drawbacks of current methods for modeling.

1.0.1 Metabolic Networks

Metabolic networks are one of the most well–studied examples of biochemical networks. Their

investigation was spurred by the field of biochemistry long before the advent of computers.

The glycolysis pathway is a well–known and well–studied example. It processes glucose in

order to produce two net molecules of ATP, two molecules of the cofactor NADH, and a

host of carbon skeleton molecules required by the cell. Figure 1.1 shows the key steps in

glycolysis based on a previously published model [136]. Negative feedback plays a major

role in the glycolysis pathway. This is due to the fact that many glycolytic enzymes can be

allosterically regulated, meaning that effector molecules can bind to these enzymes outside of

the active site to alter the activity of the enzyme. Six regulatory signals converge on fructose

1,6–bisphosphate (of which one is shown in the figure). Fructose 6–phosphate represents a

pool of intracellular sugar molecules, and phosphofructokinase commits these molecules to

the remainder of glycolysis via the transfer of ATP 1. This step is one of four key steps which

largely control glycolytic flux in mammalian cells [295].

Partly as a result of negative feedback, metabolic networks have a rapid response time

(microseconds to seconds [261]). Metabolic networks need to respond rapidly to changes in

supply and demand of nutrients, an important property for the organism’s survival.

Glycolysis is one of the most well–studied biochemical pathways. Yet, modeling even this

archetypical pathway poses significant challenges. In one study, Teusink et al. painstakingly

determined all enzymatic parameters of the pathway experimentally [298] and used these

values to parameterize a kinetic model. This model failed to reach a steady state unless

branches were included to other pathways (trehalose, glycogen, glycerol and succinate), and

1the molecules may be converted back to fructose 6–phosphate via the reverse reaction catalyzed by
fructose bisphosphatase, but this is a futile cycle that needlessly consumes ATP and is thus assumed to
be downregulated
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Figure 1.1: A canonical example of a metabolic pathway in the form of a condensed version

of glycolysis (the conversion of fructose 1,6–bisphosphate to pyruvate is a 6–enzyme process

— not all steps are shown). Glycolysis consumes six–carbon sugars and produces energy in

the form of ATP and the reducing agent NADH. The diagram shown here depicts negative

regulation (in red) of the fructose 1,6–bisphosphate committal step via ATP. Thus, an excess

of ATP will tend to reduce glycolytic flux. Glyclysis is also negatively regulated by the

downstream metabolite phosphoenolpyruvate (not shown) and possibly positively regulated

by citrate. This diagram was generated from an SBML model [136], which also considers

fermentation (hence the presence of reactions downstream from pyruvate in the diagram).
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even with these branches, significant deviations were observed compared to in vivo results.

Teusink et al. posited that these deviations were possibly due to different regulation of the

enzymes under in vivo conditions. Thus, even the most well–studied metabolic pathways are

difficult to model mathematically.

Nevertheless, improved understanding of metabolic pathways like glycolysis is critical

in industry and medicine. The fermentation of sugar to ethanol represents one of the first

instances of human exploitation of a biochemical pathway [306]. Today, this process is

widely used by the food industry for the production of alcohol and cheese. Current efforts are

underway to use glycolysis for biofuel production [56, 170, 46]. In medicine, the upregulation

of glycolysis to produce lactate from glucose is one of the hallmarks of cancer (the Warburg

effect [316]), an important phenomenon that could be used to detect and treat cancer [256,

224, 185, 34, 295, 331]. A set of key enzymes in upper gylcolysis is consistently upregulated

in cancer by the Ras oncogene [295], whereas other studies based on computational modeling

have pointed to a different set of key mediators of flux in the pathway [273]. This suggests

that a holistic approach based on modeling and combined data from different conditions is

needed to fully understand the range of responses to different nutrient conditions, even for

a single pathway. Indeed, it has been suggested that glycolysis itself can act as a flux sensor

and drive various cellular functions based on nutrient availability and intracellular conditions

[158, 160, 130, 306].

Glucose metabolism may play an important role in the activation of T lymphocytes [223].

Whereas näıve and memory T cells circulate in the bloodstream in a catabolic resting state,

activated T cells rapidly transition to a state of growth and proliferation. This requires a

significant shift in metabolic programming and nutrient allocation. It is believed that newly

activated T cells prefer glycolysis over oxidative phosphorylation to drive the accumulation

of biomass and prepare the cell to enter infected areas or tumors, where nutrients may be

depleted [223]. Altered glycolysis is also a major factor in other disorders such as diabetes

[270, 116], where it may play a role in rendering muscle tissue insulin resistant. Finally, gly-

colysis is the main ATP production pathway in the malaria parasite Plasmodium falciparum,
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and could potentially be used to treat malaria infections [210].

Metabolic networks, in addition to providing the cell with nutrients and energy, also

play an important role in disease, potential treatments for cancer and infection, and the

production of biofuels and other important industrial chemicals in synthetic biology. The

advent of enzyme kinetics more than a century ago [200] has allowed for a great deal of

mathematical modeling of metabolic pathways. Yet, despite this, much work remains in

order to fully understand the regulation of these pathways.

1.0.2 Signaling / Protein Interaction Networks

Signaling networks help the cell to respond to external stimuli. Extracellular signals are fre-

quently transduced based on interactions between proteins, such as protein binding, phospho-

rylation, or degradation, and for this reason signaling and protein interactions are grouped

together here. Whereas the other categories of cellular networks (metabolic and gene reg-

ulatory networks) are well defined, signaling and protein interaction networks comprise the

remainder of networks that do not fall into these neatly defined categories. As a consequence,

they are very diverse in their mechanism of action, involving enzymatic catalysis, protein

binding, and sometimes ion flow across membranes.

One major signaling pathway in eukaryotes is the G protein–coupled receptor (GPCR)

pathway. This pathway is notable because its modular nature allows it to connect a wide

variety of stimuli to different cellular responses. GPCRs are known that respond to light,

sugars, peptides, and lipids [220]. A GPCR is a membrane–bound receptor that, upon

stimulation via its cognate ligand or absorption of light energy, releases an associated G

protein via replacing the G protein’s bound GDP nucleotide with GTP. The G protein may

then activate secondary messenger molecules. GPCR pathways are highly important in

medicine and are the target of approximately a third of all currently used drugs [96], and

have been the subject of numerous modeling studies [123].

Another important signaling pathway is the epidermal growth factor receptor (EGFR)

pathway. The EGF receptor consists of a family of four closly related membrane proteins
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that respond to their cognate autocrine signaling peptides (EGF and TGFα). The signal

is transduced slightly differently by different members of the EGFR family, but it usually

involves receptor dimerization, internalization (i.e. engulfment of active receptors by the

cell to form endosomes), and phosphorylation of the cytoplasmic tyrosine residue on the

receptor. The EGFR pathway is mutated in the majority of cancers, making it a target

in cancer treatment as well as an important part of understanding tumor biology. Many

attempts have been made to model the EGFR pathway, with the earliest models accounting

for short–term kinetics using Western blotting for quantitative data to parameterize the

model [150, 156]. More modern methods use mass spectrometry to obtain quantitative data

with better accuracy and reproducibility [274].

Signaling networks are usually formed by sets of interacting proteins. Even in the case

of ionic signaling such as calcium ion flow in muscles and neurons, membrane transporter

proteins invariably play an important role. A major part of elucidating the behavior of

signaling networks is therefore determining which proteins in the cell interact by binding or

some other mechanism.

Binding interactions can be detected using a variety of approaches. One high–throughput

method is the yeast two–hybrid assay [261], which is based on fusing the putative interacting

proteins of interest to different domains of a transcription factor. If the proteins are binding

partners, these transcription factor domains are brought close together, the transcription

factor becomes functional, and transcription of the gene can be used as a readout of activity.

However, the two–hybrid system is also known to have reliability problems and frequently

causes false positives and negatives, as evidenced by the inconsistency of results [77].

An alternative to the two–hybrid assay is Förster resonance energy trasnfer (FRET),

which relies on labeling the putative interacting proteins with fluorophores that have separate

excitation and emission spectra. The donor fluorophore emission spectrum is selected to

match the acceptor fluorophore absorption spectrum. When the two fluorophores are brought

close together, the donor may transfer some of its fluoroescent energy to the acceptor, which

then emits in turn, and this signal can be used to determine the proximity of the two proteins
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Figure 1.2: A diagram of the EGFR pathway based on the model by Borisov et al. [47].

Dashed lines are putative interactions, solid black lines are verified interactions, and red lines

are inhibitory interactions. After binding to its cognate ligand, an EGF receptor is internal-

ized and phosphorylates a typrosine residue on its own cytoplasmic tail. The cytoplasmic

side of the receptor can then bind to the Src–Homology–2–containing SHC adapter protein,

as well as other potential adapter protein complexes such as Grb2–Sos [44]. These adapter

proteins then eventually activate Ras, a small GTPase, that in turn activates the mitogen ac-

tivated protein kinase (MAPK) pathway, which regulates cellular processes related to growth

and survival.
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and hence whether an interaction occurs. Other techniques for detecting protein interactions

include pulldown and coimmunoprecipitation assays [285].

1.0.3 Gene Regulatory Networks

Gene regulatory networks control the expression of different genes at the transcriptional and

translation level. A classic example is the lac operon in E. coli and many other bacteria.

E. coli has a constitutively expressed repressor protein (LacI) that binds to the lac operon

and prevents its expression. When lactose is present in the cytoplasm, it is metabolized to

allolactose, which binds to the LacI repressor and causes it to change conformation, preveting

it from binding to DNA at the lac operon.

LacI along with two other repressors, TetR from a transposon encoding tetracycline

resistance, and the cI repressor from λ phage, have been combined in a synthetic genetic

oscillator known as the repressilator [88]. Modeling played an important part of this feat of

synthetic biological engineering. As can be shown from the model, the system only oscillates

under certain conditions. Hence, it is important to ensure these conditions can be met prior

to building the circuit. The repressilator model is available in the BioModels repository [89].

“What I cannot create, I do not understsand.” Physicist Richard Feynman famously left

this message on a blackboard shortly before his death in 1988. This observation certainly

holds true for biology. In the same year as the repressilator (2000), another synthetic genetic

circuit was also published in Nature: the bistable switch (also known as a “toggle switch”)

by Gardner et al. [103]. This switch is formed from two genetic repressors: LacI and TetR

(other variants use cI). When LacI protein is at high levels, it prevents transcription of TetR

and vice versa. The system can be flipped from one state to the other via induction of

LacI and TetR using isopropyl–β–D–thiogalactopyranoside (IPTG) or anhydrotetracycline

respectively. The lac operon, the repressilator, and the toggle switch are shown in Figure

1.3.
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C

Figure 1.3: Examples of natural and synthetic gene regulatory networks. All diagrams

use SBOL visual [241] symbols: promoter (arrow), ribosome binding site (RBS, half–circle),

coding sequence (thick arrow), and terminator (“T”). The lac operon consists of a collection

of genes for metabolizing lactose (A) along with the LacI repressor under a separate constitu-

tive promoter. (B) The repressilator: A synthetic network of three transcriptional repressors

that generates oscillations under certain conditions [88]. (C) A genetic toggle switch [103].

These images were generated with DNAplotlib [79]. (B) is based on an example included

with [79].
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Figure 1.4: Coherent (A) and incoherent (B) feed–forward loops. Arrow heads are positive

interactions and flat connectors are negative. Many other types of combinations of positive

and negative connections are possible, but the specific configurations shown here are the most

common in natural yeast and E. coli gene networks. See [261] for a more comprehensive list

of different types of motifs.

1.0.4 Network Motifs & Design Principles

An interesting feature of many types of networks is the appearance of motifs — subgraphs

with certain structures that occur much more frequently than would be expected given a

random graph. Motifs were first introduced to systems biology in 2002 [202] but were studied

in other fields under different nomenclature as early as 1979 [71, 287, 289, 288]. To enable a

fair computation of the frequency of motifs, the random networks should be generated with

a degree distribution that matches the input graph [261] or, more generally, sampled from

the “universe” of graphs with row and column sums matching the input [288]. Although the

role and significance of most motifs is still largely unknown, feed–forward loops have been

suggested to serve as persistence detectors (i.e. they respond to sustained input but not

short bursts of input), to speed up overall transcription response times in genetic networks

[182], and to process pulsatile dynamics [329]. Figure 1.4 shows the two most common types

of feed–forward loops in natural yeast and E. coli gene networks.
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The usefulness of motifs as design principles is dubious due to the fact that ubiquity

alone does not yield any conclusions regarding the essentiality of the function of motifs.

1.1 A Survey of Modeling Formalisms

Cells are ultimately chemical systems, so it is only natural to describe cells in terms of the

chemical reactions that occur within them 2. Perhaps the two most important reactions in

living cells are transcription and translation. In prokaryotes, transcription can be modeled as

the binding of sigma factor and RNA polymerase (RNAP) to a gene promoter, open–complex

formation, and elongation of the mRNA transcript:

P + σ Pσ Binding of σ factor

Pσ + RNAP T1 Binding of RNAP, transcript initiation

TN + tRNA TN+1 Transcript elongation

Depending on the level of detail of the model, these processes can be condensed into a

single process per gene that represents simply “transcription” with no intermediate states.

Translation can be represented similarly at varying levels of detail (ribosome binding and

elongation, or simply a lumped process without any intermediate states). There are many

different methods for modeling biological processes. These methods mainly differ by the

level of detail that they use to represent underlying processes. Table 1.1 shows a summary

of the methods discussed in this thesis from least detailed to most detailed. It is possible

to combine multiple different approaches at different levels of detail to create a multi–scale

model. Ideally, such a model would be accurate at every level of detail, but in practice

tradeoffs must be made in order to parameterize and efficiently simulate multi–scale models,

necessitating case–by–case compromises. Hence, multi–scale models are not included in Table

2Reactions need not occur in a living system to exhibit complex behavior. An interesting counterexample
is the Belousov–Zhabotinsky reaction, which produces complex, localized dynamics (see https://www.

youtube.com/watch?v=IBa4kgXI4Cg for a demonstration).

https://www.youtube.com/watch?v=IBa4kgXI4Cg
https://www.youtube.com/watch?v=IBa4kgXI4Cg
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1.1 because they may have different accuracies at different levels of detail, or they may be

inaccurate at all levels due to an inaccuracy at one level propagating to other levels.

The choice of modeling formalism for a particular problem depends on the scientific

questions one wishes to ask and the level of detail required to address them, the available data,

and computational feasibility. If the goal is to understand knockout lethality, a constraint–

based model may be sufficient, since these models are often able to predict which reactions are

required for a pathway. However, for modeling transient processes such as calcium signaling

or circadian rhythms encoded by genetic circuits, a kinetic model may be necessary.

1.1.1 Kinetic Models

Kinetic models have a long history in biology, with perhaps one of the first examples being

Michaelis–Menten kinetics for enzyme catalysis, derived over a century ago [200]. At the

mechanistic level, kinetic models are based on the idea of chemical potential acting as a

driving force for chemical reactions, but they can also be used anywhere the law of mass

action is applicable (for example, clearance of a virus from the body — see below). Kinetic

models describe the rate of change of different quantities over time. This change can occur

in bulk, as it does for most cases where the number of molecules is large (abundant cellular

metabolites and proteins), but the change can also occur in discrete events (stochastic models,

below). Kinetic models thus span a wide range of levels of granularity, from bulk reactions

to individual molecules.

A Motivating Example

An important instance of kinetic modeling was in the development of a treatment regimen for

human immunodeficiency virus (HIV). Following initial flu–like symptoms that result from

infection by the virus, patients typically exhibit a very gradual depletion of T lymphocytes

over many years, which initially led many researchers to suspect that the virus emerged very

slowly and gradually, eventually reaching high enough numbers to overwhelm the immune

system. However, a study incorporating a kinetic model by Alan Perelson shows that this was
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Formalism

Static Logical / boolean models (can be dynamic) Least detailed

Constraint–based models

Hybrid constraint / kinetic models, cybernetic models [326]

Kinetic ODE models

rule–based ODE models

Stochastic kinetic / rule–based models

Spatial diffusion / PDE models

Dynamic Molecular dynamics simulations Most detailed

Table 1.1: Modeling formalisms operate at varying levels of detail. “Detail” here is taken

to refer to the number of reactions (mechanistic detail), inclusion of dynamics (temporal

detail), and the presence of discrete molecules (as in stochastic simulations). In the most

coarse–grained representation, cellular behavior is represented phenomenologically without

a connection to the underlying mechanism. For example, logical models describe the on/off

action of genes but not the molecular mechanisms that lead to these states. Additionally,

logical and constraint–based models cannot be used to predict the timescale of changes in

cellular state. Hence, coarse–grained models can be used to predict some aspects of bio-

logical behavior but not necessarily why or how the behavior occurs on a molecular level.

On the other hand, molecular dynamics (MD) simulations can, in principle, account for all

molecular interactions in the cell. However, cellular–scale MD simulations are difficult to

parameterize (the initial states of all molecules must be known) and are computationally

infeasible. Formalisms in between these two extremes provide mechanistic insight by balanc-

ing detail against varying levels of accuracy versus computational efficiency. Further, some

models exclude temporal information (static formalisms, top part of table) whereas more

detailed models incorporate temporal information and can be used to predict the change in

system state over time (bottom part of table).
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not the case [125]. In the study, patients were treated with an HIV protease inhibitor, which

caused a rapid fall in plasma virion count and a rapid rise in lymphocyte count. By fitting a

model of virus production and clearance to this transient response, Perelson et al. calculated

that the mean half–life of virions in the blood was about 2.1 days. Hence, production of the

virus was not a gradual process as was previously assumed. Instead, an equilibrium state

with rapid production and clearance of the virus is maintained during infection. Using this

information, Perelson et al. calculated the mean production of the virus to be on the order

of 109. The mutation rate of HIV is approximately one in three virions. This rapid mutation

is enough to quickly develop resistance to a single anti–retroviral drug (ARV). However, for

three drugs, the expected length of time required for the virus to develop resistance is:

3 ·
(

9800

3

)/
109 = 12700 days = 35 years

The number 9800 is the size of the HIV genome in base pairs. The main conclusion

— that three–drug therapy is required to overcome resistance, was successfully employed in

anti–retroviral combination drug therapy that saved many lives. This example illustrates the

importance of kinetic modeling. Despite the simplicity of the model of virus production and

clearance used here, it was able to provide counterintuitive results (virions are in equilibrium

between rapid production and clearance) that led to clinical strategies.

ODE Models

Ordinary differential equation (ODE) models are a very common type of kinetic modeling

formalism. They are based on the bulk movement of large numbers of molecules and/or cells,

so that the effects of single molecules become negligible. The rate of a given process (such as

a chemical reaction or protein binding) can be described from the law of mass–action. For

example, a process with n sources (usually referred to as reactants, but may be interacting

proteins or some other source state) are converted into products at the rate ν given by:



www.manaraa.com

15

α1R1+α2R2+. . .+αmRm β1P1+β2P2+. . .+βnPn, ν = kf ·Rα1
1 ·Rα2

2 ·. . .·Rαm
m −kr·P

β1
1 ·P

β2
2 ·. . .·P βn

n

where R and P are the reactant and product vectors and α and β are the reactant and

product stoichiometries respectively. This equation can be similarly applied to every reaction

in the network, thus yielding a set of first order, ordinary differential equations. In order to

write a more general form, let s be a length–n vector of species (nodes) in the network, ν

be a vector of rates, and the stoichiometry matrix N contain the stoichiometry coefficient of

sj in νk in row j and column k. Positive elements of N are products and negative elements

are reactants. The rate of change of the species vector is given by:

ṡ = Nν

Conveniently, this same formalism can also be used for lumped processes such as Michaelis–

Menten kinetics.

Numerical methods for solving these types of differential equations have been extensively

studied and are readily available. One particular notable method is the LSODA solver de-

veloped by Petzold and Hindmarsh in 1983 [231, 124], which automatically selects between

stiff and non–stiff solvers. Stiffness is a property of a system of differential equations that

causes the step size of the solver to become extremely small unless the solver is specifically

designed for stiff systems, e.g. using backward differentiation formulas (a more mathemat-

ically rigorous definition of stiffness is provided in [231]). Dispite its age, LSODA is still

widely used today (see [4] for a modern implementation and [118] for a GPU version), which

is a testimate to its reliability for solving systems of differential equations.

Stoichiometry reduction

In order to find the steady state of the network, if one exists, Newton’s method can be used.

Newton’s method locates states where the time derivative of the species vector ṡ is zero.

Newton’s method requires inverting the Jacobian:
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J =


∂ṡ1
∂s1

∂ṡ1
∂s2

. . .
...

. . .

∂ ˙sn
∂s1

∂ ˙sn
∂sn


However, this matrix can be singular if any species in the network are not independent

of the others. Consider the kinase cascade depicted in Figure 1.5. The kinase A can be

phosporylated to AP , which phosphorylates B to BP in turn. The total quantities A + AP

and B +BP are constant in time. The stoichiometry matrix for this system is:

N =

ν1 ν2 ν3 ν4


−1 1 0 0 A

1 −1 0 0 AP

0 0 −1 1 B

0 0 1 −1 BP

This matrix clearly has rank 2 since the second and fourth rows are inversions of the first

and third respectively. We can use the substitutions A = Atot − AP and B = Btot − BP to

refactor the system as follows [134]:

N =


1 0

−1 0

0 1

0 −1


−1 1 0 0

0 0 −1 1

 = LNR

The matrix NR is called the reduced stoichiometry matrix and contains only the inde-

pendent rows of N. In this example, it has rank 2. The matrix L is called the link matrix

and can be computed in general from the reduced stoichiometry matrix:

L = N ·NT
R

(
NR ·NT

R

)−1
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Figure 1.5: The kinase A is phosphorylated to AP , which then phosphorylates B to BP . In

this kinase cascade, the total quantities A + AP and B + BP are constant in time. Hence,

dA/dt = −dAP/dt and dB/dt = −dBP/dt. This creates problems for Newton’s method,

which requires that the Jacobian be invertible.

Further, the independent species si = (A B) are related to the original species vector s

by the link matrix and vector of total quantities t = (0 Atot 0 Btot):

s = L · si + t

The Jacobian can then be calculated based solely on the two–element vector si, yielding

a 2 × 2 full–rank matrix that can be inverted to calculate the steady state using Newton’s

method.

Stochastic Models

Stochastic models represent chemical reactions or binding / unbinding of proteins as discrete

events involving individual molecules. They are applicable when the bulk movement of mass

represented by ODE models becomes inaccurate. For example, the number of LacI repressors

in a single E. coli cell has been estimated to be just 10–50 molecules [152]. Hence, when
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one of these repressors is created or destroyed, the total repressor count changes by as much

as 10%. This distinction can have far–reaching counterintuitive effects. For example, it is

possible to build a linear amplifier for gene expression without negative feedback simply by

relying on noise due to having a low copy number of molecules [152].

Stochastic models are usually simulated using Gillespie’s algorithm [108], developed in

1977. The Gillespie algorithm is inherently stochastic and generates a different trajectory

each time it is run, but the set of trajectories is statistically correct (having the correct mean

and variance for the given model’s dynamics) as the number of runs tends toward infinity.

The original Gillespie algorithm scaled linearly with the number of reactions in the model.

A more recent version [106] (the “Next Reaction Method”) scales with the logarithm of the

number of reactions but generates the same statistically accurate results under all conditions.

Other methods such as tau–leaping [109, 110, 245, 300, 303] trade statistical accuracy for

simulation speed.

Figure 1.6 shows examples of multiple stochastic simulations of a system with the same

initial state. Despite being behaviorally different from ODE simulations, stochastic simula-

tions require the same set of information: a list of kinetic parameters and processes. The

only required change is that initial quantities should be specified in numbers of molecules

instead of concentrations. In theory, this conversion can be performed automatically if all

species concentrations and the volume of all compartments in the model are both known.

As a result of this overlap, stochastic and ODE models can often be used interchangeably.

This is useful for testing whether discretization appreciably affects the model’s dynamcs, as

is the case in Figure 1.6.

Limitations of Kinetic Models

Kinetic models are one of the oldest modeling techniques and their utility for constructing

accurate mechanistic models of biological processes is well–established from both a theoretical

perspective (using arguments based on underlying physical mechanisms) and an empirical

basis (through the development of many instances of accurate, predictive models, at least in
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Figure 1.6: A stochastic model generates different output each time it is simulated. This

figure shows multiple stochastic simulations of a bistable switch starting at the unstable

equilibrium of the system. The simulation randomly converges to either of the two stable

equilibria.
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cases where parameters can be accurately measured [125, 277]).

However, in larger, more complex models, the parameters are not known and must be

determined indirectly using a fitting method. Many models that rely on fitting to deter-

mine parameter values are not quantitatively accurate. For example, the repressilator and

toggle switch models in Section 1.0.3 both predict the qualitative behavior (oscillations and

bistability) of the genetic circuits they are designed to model, but do not accurately predict

the exact conditions (i.e. the concentrations of all species in the model) under which these

behaviors occur3. Terence Hwa, who studies cellular biology from a top–down perspective,

once remarked of mechanistic modeling that the predictive capabilities of such models is

limited by the fact that the reference state is unknown [132].

The data for parameterizing kinetic models may improve with the advancement of single–

cell technologies. However, other bottlenecks exist for kinetic models. Large kinetic models

are very expensive to simulate and calibrate compared to their constraint–based counter-

parts (described below). Fitting parameters to a large kinetic model may take several days

or weeks (see Chapter 3 of this thesis). In such cases, determining error bounds on the

fitted parameters, which usually requires at least one round of fitting per parameter (usually

many hundreds of rounds), is computationally prohibitive. Thus, kinetic models can exhibit

scalability problems that make them difficult to apply to whole cells.

1.1.2 Constraint–based Models

Constraint–based models, also frequently referred to as flux–balance models, compute the

flux through all reactions in the model subject to a set of constraints in the form of upper and

lower limits of the flux of each reaction, as well as an overall objective function to optimize

(often based on maximizing the growth rate, but may also be miximizing the production of

ATP or some other by–product [248]).

For example, consider a cell that metabolizes nutrient A to produce carbon skeleton

3The models can be made to predict the exact conditions through parameter fitting on said conditions,
but this would amount to a circular argument.
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molecules B and C according to Equation 1.2.

A 2B (1.1)

A C (1.2)

Assuming the reaction is at steady state, we must have:

JA = 2JB + JC ,

where JA, JB, and JC are the fluxes leading into the pathways for A, B, and C respectively

(JA is inverted for clarity). Assume that JA is limited by nutrient uptake and therefore fixed.

Further assume the cell maximizes its growth rate given by the biomass reaction JB · JC .

max (JB · JC) = max

(
JC
JA − JC

2

)
This maximum occurs when JA = 4JB = 2JC (the flux through JB is half that through

JC , which is expected since one molecule of B requires fewer nutrients to produce than a

molecule of C).

Constraint–based modeling takes its name from several eponymous constraints used to

define the solution space of the model.

• Stoichiometric constraints: The stoichiometry coefficients of reactants and prod-

ucts in all reactions in the model can be used to constrain flux values in different

branches as we did in the example model above.

• Steady–state constraints: The concentrations of all intermediate metabolites in the

pathway can be measured and used to constrain the fluxes to values which yield these

concentrations in steady state.
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• Abundance constraints: The transcript or (better yet) protein levels and kinetic

parameters (if available) of all enzymes can be used to place relative constraints on the

flux catalyzed by the enzyme (the enzyme’s Vmax).

• Other types of constraints: Arguments based on the free energy of a reaction can

be used to suggest reasonable ranges for the flux under different conditions. This

allows constraint–based models to incorporate temperature and structural dependence

[327, 122].

The overall effect of these constraints is that the space of acceptable solutions to the

flux vector forms a cone in RN . The fluxes of the N reactions in the network can then

be determined (albiet non–uniquely) from an objective function on this flux cone. It is

assumed that the cell is optimized by evolution to maximize this objective function, which is

usually taken to be the biomass composition of the cell (i.e. the combination of all essential

biomolecules in the ratios required by the cell). Cells with optimal production of all essential

biomolecules in the correct ratios will exhibit the least waste of energy and thus have the

highest growth rate. In a colony of rapidly growing cells in exponential phase, this may

well be true, since cells with the highest growth rate will dominate the population and

hence be selected by evolution. By assuming that cells optimize their growth in this way,

linear programming can be used to find a solution to the flux vector which maximizes this

function within the flux cone. However, when cellular crowding occurs, cells often switch

into an energy conservation mode characterized by a reduction in both energy consumption

and expenditure. In these cases, the assumption of maximum growth rate may be a poor

approximation of the cell’s state and lead to erroneous results. What assumptions should

be used instead under such a situation? The field of constraint–based modeling has yet to

provide a general answer to this question, but the inverse problem of determining an objective

function given a flux vector has been explored [332] and may eventually reveal strategies for

improving the accuracy and fidelity of constraint–based models.

Since no kinetic data is required to construct constraint–based models, they are often
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used for poorly characterized organisms where data is sparse or non–existent. Another

major advantage of constraint–based models is that the linear programming methods used

to optimize them are much more computationally efficient than the generalized, global,

non–linear optimization required by kinetic models. This allows scaling of constraint–based

models to larger sizes and they are frequently used in genome–scale models [257]. Constraint–

based models are useful in various “bottom–up” studies and have been used to predict kinetic

parameters for all enzymes in E. coli [75]. A very large continual community–based effort

has yielded a highly–complete genome–scale model of yeast [29].

Limitations of Constraint–Based Models

Many of the advantages of constraint–based models can be equally viewed as disadvantages.

For example, the fact that constraint–based models do not require kinetic data makes them

easy to construct, but also limits their predictive power, since they ignore changes in the

cell over time. Diurnal models have been constructed for photosynthetic organisms by using

separate day and night–cycles to approximate the organism’s internal circadian clock [259].

However, this relies on a priori demarkation of the boundaries of the cycle and bears no

connection to the underlying biological mechanisms that drive this change.

Another limitation of constraint–based models is that the assumption of maximum growth

is difficult to verify or refute. If the model is constrained using metabolite, flux, and abun-

dance data, the flux cone of acceptable solutions becomes more narrow and the effect of the

objective function is diminished, but any variability that remains creates a potential source

of error that is difficult to address. Additionally, it is possible that multiple maxima with

the same value exist within the flux cone. In this case, the fluxes predicted by the model are

non–unique, which further complicates analysis and makes drawing conclusions difficult.

Constraint–based models thus have excellent scalability and are easy to construct. How-

ever, they are difficult to validate, they are only predictive of the state of the cell at a

single snapshot in time, and their solutions may not be unique. Despite these drawbacks,

constraint–based models are routinely used in constructing genome scale models for their util-
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ity in incorporating large numbers of reactions without requiring kinetic data. Constraint–

based models are also used for organisms that have many uncharacterized genes, such as

cyanobacteria [259] and other types of exotic organisms that might be useful for biofuel

production.

1.1.3 Rule–based Models

Rule–based models are an approach of managing complexity when modeling biological net-

works. Fundamentally, they are no different from kinetic models. Both approaches describe

a chemical reaction network along with associated kinetics, and allow the network to be

simulated using either an ODE solver or a stochastic solver such as the Gillespie method.

The difference is that rule–based models do not enumerate all possible states of molecules in

the network. Proteins can be modified in numerous ways — phosphorylation, glycosylation,

and glypiation. Further, there are often numerous sites for the modification. The tumor

suppressor protein p53 has between 17 and 20 phosphorylation sites [261, 301]. Proteins can

also bind to form multimeric complexes. Some proteins, such as small heat shock proteins,

form polydisperse oligomers (i.e. the exact number of subunits fluctuates) [119]. All of these

modifications can theoretically alter the network behavior by changing the binding equilibria

between proteins / small molecules or enzyme activity. It is unlikely that all states that arise

as a result of modification and complexation are necessary to explain network dynamics (the

number of phosphorylation states for p53 alone is over 100,000 [261]), but this myriad of

states nevertheless creates a significant bookkeeping problem for modeling.

Rule–based models describe the molecules in a system and the ways these molecules

can be modified. Modifications occur at user–defined sites, such as threonine or tyrosine

residues (phosphorylation), or protein binding sites (complexation). Each site can have a

number of discrete states, indicating whether phosphorylation or binding has occurred at the

specific site. Rule–based modeling software then enumerates all possible molecular states.

This formalism can be used to manage complexity. For example, consider the following

epidermal growth factor receptor (EGFR) model from the BioNetGen / RuleBender rule–
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based modeling platform [43, 280].

begin molecule types

egf(r) # egf, the receptor ligand

egfr(l,r,Y1068~Y~pY,Y1148~Y~pY) # the egf receptor

Shc(PTB,Y317~Y~pY) # Shc, Grb2, and Sos are adapter proteins

Grb2(SH2,SH3)

Sos(dom)

end molecule types

The code above describes all molecules in the system and the associated sites for each

molecule. For example, the EGF receptor (egfr) has four sites: a ligand binding site (l),

a dimerization binding site (r — the receptor forms autodimers upon ligand binding), and

two tyrosine phosphorylation sites. After phosphorylation, the tyrosine residues can then

bind to various adapter proteins, which leads to a number of possible complexes. In the fully

enumerated network, there are 356 possible combinations of complexes with various states

of modification. In contrast, the rule–based model contains just multi–state species, which

clearly helps to manage complexity.

1.1.4 Other Types of Models — Logical, Boolean, Hybrid

In certain cases, the behavioral properties of a biological network can be captured by a

very simple model where genes exist in on/off states. In a boolean network, the state of

each node is a function that maps a subset of nodes (the input nodes, e.g. transcriptional

regulators of a given gene) to a true/false value. The model is dynamic in the sense that

repeated evaluations of all nodes in the network generate a time series, and it is possible

for the network to have a stable steady state or exhibit oscillations. However, the extreme

simplicity of these models makes drawing scientific conclusions difficult. Boolean networks

have been used in the past to reconstruct plausible transcription factor regulatory networks
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Figure 1.7: The transient response of the rule–based EGFR model from BioNetGen [43, 280].

The plotted quantities are defined by observables, which collect related states according to

user–defined criteria (for example, the total concentration of all receptor dimers regardless

of phosphorylation state or bound adapter proteins).

in yeast in cases where limited data prevented the construction of a more detailed model

[147].

The two–state approach of boolean models leaves out important dynamical information.

More recent studies employing so–called “constrained fuzzy logic” models [179] have at-

tempted to provide a compromise between the temporal resolution of kinetic models and

the simplicity of boolean models. Fuzzy logic is a well–established technique from machine

learning that uses values between 0 and 1 to represent uncertainty in classification. It can be

thought of as an extension of boolean logic to a continuum of values (not just true or false).

Constrained fuzzy logic is a subset of fuzzy logic wherein the transfer functions between

nodes are constrained to be Hill functions (in normal fuzzy logic, arbitrary transfer functions

can be used). The advantage of this approach is a slight reduction in parameters compared

to a kinetic model, and boolean logic can be used in place of complex regulation machinery.

Constrained fuzzy logic models only require two parameters per node (species), whereas ki-

netic models require at least two parameters per reaction, or more for lumped kinetics or



www.manaraa.com

27

allostery. This formalism has been used to model the dynamic response of the EGFR/ERK

signaling pathway [179]. However, constrained fuzzy logic models are not widely adopted

(being used only by a few groups), are difficult to relate to experimental measurements in a

quantitative way, and it is unknown whether they provide significant benefits over boolean

models.

The last type of modeling formalism considered here is hybrid models. This not really

a formalism, but rather a method of combining different formalisms. Having reviewed the

advantages and disadvantages of a number of formalisms up to this point, it is natural

to ask whether different formalisms can be combined to yield a more versatile appraoch.

Indeed, hybrid modeling was used in the construction of a M. genitalium whole–cell model

in one high–profile study [145]. This model employs constraint–based modeling for the

metabolic pathways of the cell, but uses kinetic models for transcription and translation.

At pre–determined time intervals, the constraint–based metabolic model is updated with

the abundances of various metabolites, and a new flux vector is calculated. This approach

adds flexibility and a better performance over a single kinetic model. However, there are

significant drawbacks:

• The constraint–based model may have multiple solutions for a given state, introducing

ambiguity.

• Whereas the numerical stability of ODE models is well–studied [69, 231, 124], the

numerical stability of hybrid methods has not been investigated. For example, numeric

ODE solutions converge as the time axis is subdivided into finer intervals, but for hybrid

models this is not necessarily the case.

These issues must be dealt with in order to lend credibility to the output of such models.

Other types of hybrid models seek to combine agent–based and kinetic models to create

spatial models of colonies and tissues of cells [293]. Recent advances in various modeling

formalisms continue to make hybrid models an active and largely unexplored area of research.
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1.2 Applications: Models in Medicine / Systems Pharmacology

Systems pharmacology seeks to use biological models as predictive tools in guiding drug dis-

covery and patient treatment [305, 304]. This field is closely related to two very important

disciplines in pharmacology. Pharmacokinetics (PK) is the study of how drugs are metabo-

lized by the body, and pharmacodynamics (PD) is the study of how these drugs affect the

body. These two approaches can be combined to create quantitative PK/PD models, i.e.

dynamical models of the action of a drug or combination of drugs and the body’s response

using an integrated approach. Kinetic PK/PD models have been shown to be very useful

in guiding treatments based on detailed predictions of drug levels in the blood, and play

an important role in drug discovery. ODE–based kinetic models are a common formalism

used to construct PK/PD models (e.g. [222]) owing to their versatility for expressing time–

dependent phenomena at various levels of detail. Modeling efforts are likely to be highly

central to pharmacology and drug discovery for the foreseeable future.

1.3 Applications: Models in Synthetic Biology

The field of synthetic biology has always made extensive use of models in the development

of genetic circuits. Two seminal studies, both published in the year 2000, used kinetic

ODE models in the construction of the repressilator [88] and a genetic toggle switch [103].

Modern synthetic biology continues to make use of modeling, although perhaps not to the

same degree of rigor. For example, the concept of negative feedback has been used to

engineer scale–invariant patterns in bacterial colonies [62]. A PDE model was used to guide

engineering of this circuit.

Software tools such as TinkerCell [63] can help alleviate cost by designing and simulating

genetic circuits in silico before the circuits are built in a lab. As with all aspects of modeling,

accurate predictions are hampered by lack of quantitative data. Much work has been done

to remedy this by quantifying promoter and ribosome binding site (RBS) activities to allow

quantitative modeling of expression [49, 51, 50, 254], which has enabled extremely versatile,
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scalable sequential logic to be implemented using genetic circuits [24]. Modeling will likely

play an important role in scaling up genetic circuits in the future.

1.4 Parameterizing Models

The parameter values of systems biology models generally do not come exclusively from

experimental measurements (although see [298, 278] for interesting counterexamples) due to

the laborious nature of in vitro characterization methods, difficulty in purifying components,

and potential disagreement between in vitro and in vivo component behavior. Thus, most

models use a more integrative formalism by measuring bulk properties of the system, such

as the transient response of key components, and fit the model parameters to this data using

optimization methods. Parameter fitting is accomplished by using an objective function that

quantifies the discrepancy between model predictions and measured data. The type of data

required depends on the model formalism.

• Kinetic models require timecourse data of key nodes in the network (e.g. metabolite

levels or protein phosphoforms). The model can be further constrained by measuring

initial conditions, a subset of parameter values (e.g. using in vitro reconstitution), and

possibly inequality constraints [203]. The objective function in such cases is usually a

variant of the sum of squared errors (SSE) between the model timecourse predictions

and the data.

• Constraint–based models can make use of steady–state levels of metabolites and abun-

dances of proteins for a given cellular state.

• Mappings in boolean models can be inferred from gene network states under many

different conditions.

This thesis focuses primarily on kinetic models, so the following parameter fitting con-

siderations apply chiefly to these types of models. Fitting ODE dynamical models is a



www.manaraa.com

30

challenging non–convex, non–linear optimization problem. The presence of local minima

prevents the use of algorithms such as gradient descent, which is popular in other fields such

as machine learning. An ideal solution to this problem would be an algorithm that robustly

locates the global minimum of the objective function. However, in reality, this cannot be

used as a convergence criterion because the global minimum is not known a priori. Instead,

convergence is usually measured using some arbitrary stopping criterion, such as stagnation

of the algorithm for a certain number of iterations. This work in this thesis uses a threshold

objective function value as a stopping criterion to ensure consistent comparison.

Biologically inspired population–based algorithms have emerged as an effective means of

solving the non–convex problem of parameter fitting for kinetic models. These algorithms

mimic biological evolution [76] or flocking behavior as observed in swarms of insects or flocks

of birds [149, 144]. The algorithms avoid becoming trapped in local minima by maintaining a

diverse population of candidate solutions at every iteration, and usually feature the ability to

combine two or more solutions to generate a potentially better solution. A non–exhaustive

summary of these methods is given in Table 1.2. This thesis presents a highly scalable

approach to fitting large models in Chapter 3.

1.4.1 Software for Parameter Estimation

Parameter fitting is an essential step in the development of most kinetic models and hence a

large number of software tools exist for solving this problem. One very well–known project is

the Data2Dynamics (D2D) engine implemented in Matlab [247, 246, 284]. D2D uses a variety

of mostly local optimization algorithms with a multi–start approach to locate global minima

[246]. The principal feature of D2D is that it provides convenience features for calculating

sensitivities and various statistics for fitted parameters. However, the use of local algorithms

(i.e. algorithms that converge to a local minimum) limits the scalability of this approach

and it is unsuitable for the large, challenging models considered here (see Chapter 3).

A recently published solution that uses global algorithms is PyBNF [203]. PyBNF uses a

handful of local and global algorithms running in a distributed fashion on different nodes to
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Table 1.2: A summary of population–based optimization algorithms used to fit biochemical

models.

Algorithm

Genetic algorihms (GAs) [76]

Differential evolution (DE) [290]

Particle swarm [149]

Artificial bee colony [144]

Harmony search [105]

Simulated annealing [72]

Interested readers are referred to a more complete summary at https://esa.github.io/

pagmo2/docs/algorithm_list.html.

achieve a speedup. This is similar to the work presented in Chapter 3 due to the overlap in

some algorithms (e.g. differential evolution is used by both methods), but PyBNF includes

fewer algorithms and has not been tested on models as large as the benchmark described in

Chapter 3.

1.4.2 Identifiability, Uncertainty and Sloppy Models

In many cases, it is not possible to uniquely infer the values of certain parameters from data.

Consider a simple production / degradation reaction:

∅
kp

SS
kd ∅

The rate of change of S is given by:

dS

dt
= kp − kdS

https://esa.github.io/pagmo2/docs/algorithm_list.html
https://esa.github.io/pagmo2/docs/algorithm_list.html
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If the only data points are measured at equilibrium, the values of kp and kd can only

be determined up to a ratio (the equilibrium constant for this reaction). The parameters

kp and kd are then said to be structurally non–identifiable. This obviously poses a problem

for parameter fitting because kp and kd can, in general, have vastly different values for each

parameter fitting attempt. This also limits the model’s predictivity outside of its fitting

data. In order to be useful, mechanistic models should ideally be able to predict states that

are not directly observed.

A closely related concept is sloppiness [302], which states that the output of a model

depends on certain combinations of parameter values, and that (within constraints) sev-

eral different combinations may exist that give the same output. Finally, uncertainty is a

term that refers to the range of values for a given parameter that satisfy a given data set.

Uncertainty, identifiability, and sloppiness are all closely related concepts. A famous quote

attributed to George Box is: “All models are wrong, but some models are useful”. Uncer-

tainty quantification tells us how “useful” the model is on a parameter–by–parameter basis.

A parameter with a large uncertainty is usually not identifiable and thus is not “useful” for

understanding the underlying mechanism. Conversely, a parameter with a low uncertainty

is strong evidence that the mechanism it is attached to is an accurate representation of the

underlying biological process. The starting point in analyzing these properties is to use one

or more of the methods described below.

1.4.3 Multi–start Optimization

While not a true uncertainty quantification technique, multi–start optimization is occasion-

ally used as a stand–in due to its ease of use. For multiple runs of an optimization algorithm

with random initial conditions, parameters that converge to different values are taken to be

uncertain. However, the converse is false except in the absence of measurement noise. For

example, consider a model fitted to a noisy data set. The fitting algorithm should ideally

find the same minimum of the objective function in each run. Thus, any identifiable parame-

ters should always converge to the same value provided the algorithm completely converges.
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Thus, multi–start optimization would imply no uncertainty in these parameters, which is not

correct when measurement noise is present.

1.4.4 Fisher Information Matrix

The Fisher information matrix is a well-known and frequently used way to account for iden-

tifiability. Let y refer to the output of a model and θ be a vector of the model’s real–valued

parameters. Then, the Fisher matrix is defined as [302] (some sources use the logarithm of

y):

Lij =
∂y

∂θi

∂y

∂θj

The Fisher information is defined by the variance / covariance of different parameters. A

parameter with a large variance has poor identifiability, while one with a small variance has

good identifiability. This is closely related to the concept of sensitivity analysis, which is a

systems biology term used to measure the impact of a parameter or species [255]. Sensitivity

analysis typically uses total derivatives instead of the partial derivatives used in the FIM, and

often does not consider cross–correlations (the non–diagonal terms in the FIM). However, in

practice, the measured quantities will be system–level observables, such as oscillation timings,

peak height, or steady state values, in which case the reported FIM must also necessarily be

based on total derivatives, meaning that the FIM and sensitivity analysis are computed in

the same way.

1.4.5 Bootstrapping

Bootstrapping is a powerful technique from statistics that can be used for uncertainty analysis

for a given data set. First, the model is fit to the entire data set and the residuals between

the fitted model and the data are calculated. Then, subsequent fitting runs are performed

using a data set constructed by simulating the model and corrupting the simulation results

with residuals sampled from the original run with replacement. The procedure is shown in
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pseudocode in Figure 1.8.

# calculate residuals from initial data set

model,residuals = fit(initial_dataset)

# run the bootstrapping method to generate new residuals

repeat N times:

# create a new dataset based on the simulation results corrupted with noise

new_dataset = model.simulate() + sample_with_replacement(residuals)

Figure 1.8: Pseudocode for the bootstrapping method.

The subsequent optimizations after the initial optimization can be performed ab initio

or they can use the initial fit as a starting point (called local bootstrapping [99]). The

uncertainty in parameter values is derived from the collection of parameter estimates pro-

duced by bootstrapping. A limitation of bootstrapping is that it requires a large number of

optimizations, usually at least 1000–10,000, in order to produce reliable estimates.

1.4.6 Profile Likelihood

The profile likelihood is yet another method for measuring uncertainty. In order to under-

stand the profile likelihood, it helps to think of the optimization process as a maximum

likelihood estimator 4. Using this terminology, maximum likelihood can be equated with

the optimum parameter values. Now consider a constrained optimization obtained by fix-

ing a single parameter value, say θi, while allowing the others to converge. The optimum

parameter values θi 6=j are used to compute the objective function minimum:

minJ (θi 6=j)

4the likelihood is defined as the probability of observing the given data from a certain set of parameters,
so this is equivalent to optimizing the parameter values so that the probability of observing the given data
is maximized
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The profile likelihood is then defined by the ratio [99]:

ln (PL (θi 6=j, c)) =
minJ (θ)

minJ (θi 6=j)

In other words, the profile likelihood is the ratio of the likelihood of the constrained opti-

mization problem to the unconstrained problem. A limitation of the profile likelihood is that

it cannot be used to compute parameter cross–correlations.

Fröhlich et al. compared the results of the FIM, bootstrapping, and profile likelihood,

and found that only profile likelihood yielded accurate estimates of parameter uncertainties,

even for simple models [99].

1.4.7 Bayesian Methods

Bayesian statistics are widely used throughout many fields. Bayesian methods differ from

the methods discussed thus far in that they accept as input a prior distribution for each

parameter (instead of a range of values) and output a posterior distribution (instead of a

single value). The prior distribution represents parameter estimates based on evidence prior

to the current fitting data. For example, if there are several conflicting literature reports

of a parameter, the prior can be chosen to encompass all of them. Many studies simply

base the prior on measurement noise or (worse yet) use a fabricated distribution based on

intuition, but this is abuse of the Bayesian method. The Bayesian method should only be

used when the prior distributions are founded on credible evidence, such as literature reports.

The posterior distribution can be thought of as a modified version of the prior that takes

into account the current fitting data. For example, the mean or standard deviation may be

shifted if a given parameter needs adjustment to fit the data.

The Bayesian method fills dual roles of parameter estimation and uncertainty quantifi-

cation. Bayesian methods have several useful properties: they avoid overfitting, and they

allow more flexibility than other methods by allowing the user to specify a prior. Given these

advantages, it may seem strange that Bayesian methods are not used more often. The reason

has to do with performance and the difficulty in obtaining reliable priors. In systems biology,
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the Bayesian method is often implemented using sequential Monte Carlo algorithms, which

are much more computationally intensive than the general non–linear fitting algorithms dis-

cussed above. Furthermore, as already remarked, choosing vacuous priors eliminates the

most significant benefit of the Bayesian method. If the input to a method is faulty, then

the output will be unreliable. It is unfortunate that many studies nevertheless employ the

Bayesian method even in the absence of credible priors. Bayesian methods thus represent a

useful approach when there is sufficient evidence for the priors and the complexity of the sys-

tem being analyzed does not exceed the available computing resources. A Python framework

for Bayesian computation in systems biology models is described in [172].

1.5 Summary of Chapters and Scientific Contributions

This chapter serves as a general introduction to systems biology and common modeling

formalisms and methods for building and calibrating models. The remainder of this thesis

is organized into three specific aims:

• Aim 1: Enable better reproducibility via the development of a standards–centric mod-

eling platform.

• Aim 2: Provide a scalable method for fitting large, complex kinetic models.

• Aim 3: Create a compiler for converting between models and special–purpose, high–

performance simulation hardware.

Taken together, these aims represent foundational advances in enabling larger, more

robust, and more scalable systems biology models. Contributions to each of these aims are

described in the respective chapters below.

1.5.1 Contributions to Scientific Reproducibility

Reproducibility is a cornerstone of the scientific method. In systems biology, this is especially

true since researchers often need to build on or directly integrate prior models in order to
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build larger, more comprehensive, and more accurate models. To achieve reproducibility,

models need to be stored in a form that is exchangeable, transparent, and usable long

into the future. A major contribution of this thesis is the development of a platform that

provides facilities for designing models using systems biology standards, which achieves the

requirements of future–proofing and transparency. Chapter 2 describes the contribution,

provides a technical definition of reproducibility, and shows how standards–centric modeling

is crucial for scientific progress in systems biology.

1.5.2 Aim 2: Contributions to Scalability of Kinetic Modeling

Parameter fitting is necessary for the development of accurate models. However, as the

complexity of a model increases, the computational cost of fitting the model becomes in-

tractable. Chapter 3 describes a contribution to model fitting that uses an innovative form

of parallelism to enable fitting of very large kinetic models. The method is rigorously tested

on an extremely large, challenging benchmark and is able to achieve improvements to both

performance and quality of fit. This contribution is a key step in enabling the construction

of larger, more comprehensive models in systems biology.

1.5.3 Aim 3: Contributions to Foundational Advances in Modeling Technologies

It is well–known that special–purpose hardware can often outperform general–purpose CPUs

for a specific task. Chapter 4 presents a contribution that allows kinetic models to be

simulated on special–purpose hardware specifically designed for systems biology. This is a

key step in enabling broader adoption of special–purpose hardware, which will in turn allow

the simulation of larger, more complex models with better performance than general CPUs.

This is also a significant contribution to the field of biomimicry, as it provides an important

bridge from model descriptions to hardware. The lessons learned from this project will be

useful in the design of future biomimetic hardware and software.
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Chapter 2

A PLATFORM FOR REPRODUCIBLE, DYNAMICAL
MODELING IN SYSTEMS BIOLOGY

The contents of this chapter are largely based on a manuscript

published in PLoS Computational Biology [196]. The curriculum

vitae at the end of this thesis lists all manuscripts and resp. sta-

tuses.

This chapter relies heavily on the role of standards in systems biology. The central

contribution is a modeling platform that achieves better reproducibility through integration

with standards. Thus, it is appropriate to first discuss why standards are necessary.

Standards are widely used throughout scientific research. In systems biology, standards

are especially important because model reuse is so common. In fact, the BioModels database

[164, 168] (a large database of systems biology models with over 1676 entries) exists solely

for the purpose of curating and hosting published models. Central to the existence of such

repositories is the availability of a common, standard format for entires. Assume, for ar-

gument’s sake, that BioModels instead hosted models written in Matlab, C, and various

other languages. If a research wishes to run a published model written in Matlab 2007, the

user may need to download an older version of Matlab to run the model 1. However, older

versions may not work on newer operating systems. Furthermore, models written in C may

only run on certain platforms and depend on libraries that are no longer available. Clearly,

this would create problems for future–proofing. Scientific reproducibility generally requires

1https://www.mathworks.com/matlabcentral/answers/99265-how-do-i-download-an-

older-release-of-matlab

https://www.mathworks.com/matlabcentral/answers/99265-how-do-i-download-an-older-release-of-matlab
https://www.mathworks.com/matlabcentral/answers/99265-how-do-i-download-an-older-release-of-matlab
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the ability to reproduce a result long into the future 2. It would also make curation much

more difficult because BioModels staff would need to be familiar with a variety of languages.

Thus, a standard encoding is necessary.

There are additional benefits to a standard encoding besides enabling large repositories.

Standard–encoded models are also transparent, in that they allow the number of reactions,

species, and other elements to be interrogated automatically. This information would oth-

erwise be buried in lines of Matlab code (requiring manual intervention by a human to

extract). Additionally, standard–encoded models can use annotations (which are essentially

links from model elements to resources) to unambiguously describe the biological molecules,

enzymes, and cellular components contained in the model. For example, the ChEBI database

[78, 120, 121] contains an entry that unambiguously represents adenosine triphosphate (ATP)

3. By linking entries such as this, a standard–encoded model can provide a wealth of infor-

mation that can be extracted by automatic data mining tools.

2.1 Survey of Standards

This section introduces various systems biology standards. Before describing the contribu-

tions of this chapter, it is useful to review each standard and its intended use–cases.

2.1.1 SBML and CellML

The Systems Biology Markup Language (SBML) [131] is a standard for describing chemical

reaction networks. Originally designed for kinetic ODE and stochastic models, SBML has

since expanded to cover constraint–based, logical (boolean), rule–based, and spatial models.

SBML’s flexibility comes from extensions, which are optional additions to the standard for

2On closer examination, this is not completely true. As an aside, it is interesting to note that recent
landmark results from physics, such as the confirmation of the Higgs boson and detection of gravitational
waves, suffer from much worse reproducibility woes than systems biology. However, the sheer number
of researchers involved in rigorously carrying out these experiments means the results are unlikely to be
contended.

3http://identifiers.org/CHEBI:15422

http://identifiers.org/CHEBI:15422
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support various modeling formalisms (e.g. the aforementioned constraint–based models etc.).

Since extensions are optional, software that supports SBML is not required to implement

support for them. This can also be seen as a disadvantage, since it fragments the standard

and the supporting software base.

SBML is encoded in XML (see glossary). Consider a simple model consisting of the

reversible binding of allolactose to the LacI repressor in bacteria. This binding process is

called a reaction in SBML, even though no covalent bonds are broken or formed. The reaction

is:

a + L
kf

kr
C

where a is allolactose, L is the LacI repressor, and C is the bound complex. The kinetic law

is:

ν = kfa · L− krC

Finally, let the initial concentrations of a and L be 10 and 1 respectively (in order to

keep this example simple, arbitrary units are used). The listing below shows how this model

would be represented in SBML.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>

<sbml xmlns=”http ://www. sbml . org /sbml/ l e v e l 3 / ve r s i on1 / core ” l e v e l=”3” ve r s i on=”1”>

<model id=”mymodel” name=”mymodel”>

<l istOfCompartments>

<compartment sboTerm=”SBO:0000410 ” id=”default compartment ” spat ia lD imens ions=”3”

s i z e=”1” constant=” true ”/>

</ listOfCompartments>

< l i s tO f S p e c i e s>

<s p e c i e s id=”a” compartment=”default compartment ” i n i t i a lCon c en t r a t i o n=”10”

hasOnlySubstanceUnits=” f a l s e ” boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

<s p e c i e s id=”L” compartment=”default compartment ” i n i t i a lCon c en t r a t i o n=”1”

hasOnlySubstanceUnits=” f a l s e ” boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

<s p e c i e s id=”C” compartment=”default compartment ” hasOnlySubstanceUnits=” f a l s e ”

boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

</ l i s tO f S p e c i e s>

<l i s tOfParamete r s>

<parameter id=” kf ” constant=” true ”/>

<parameter id=”kr” constant=” true ”/>

</ l i s tOfParamete r s>

<l i s tO fRea c t i on s>

<r e a c t i on id=” J0 ” r e v e r s i b l e=” true ” f a s t=” f a l s e ”>

<l i s tO fReac tan t s>

<sp e c i e sRe f e r en c e s p e c i e s=”a” s to i ch iomet ry=”1” constant=” true ”/>

<sp e c i e sRe f e r en c e s p e c i e s=”L” s to i ch iomet ry=”1” constant=” true ”/>
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</ l i s tO fReac tan t s>

<l i s tO fProduc t s>

<sp e c i e sRe f e r en c e s p e c i e s=”C” s to i ch iomet ry=”1” constant=” true ”/>

</ l i s tO fProduc t s>

<kinet icLaw>

<math xmlns=”http ://www.w3 . org /1998/Math/MathML”>

<apply>

<minus/>

<apply>

<t imes />

<c i> kf </ c i>

<c i> a </ c i>

<c i> L </ c i>

</apply>

<apply>

<t imes />

<c i> kr </ c i>

<c i> C </ c i>

</apply>

</apply>

</math>

</ kinet icLaw>

</ r e a c t i on>

</ l i s tO fRea c t i on s>

</model>

</sbml>

Even for this simple model, the SBML appears quite complicated. Let us examine each

component. First, SBML requires at least one compartment, which specifies the physical

place where the reaction occurs (e.g. cytoplasm, nucleus). Upon exporting to SBML, the

required compartment is automatically inserted and given the id default compartment.

SBML organizes all top–level elements into lists. In this case, listOfCompartments only

contains one element:

<l istOfCompartments>

<compartment sboTerm=”SBO:0000410 ” id=”default compartment ” spat ia lD imens ions=”3”

s i z e=”1” constant=” true ”/>

</ listOfCompartments>

The list of species contains the a, L, and C variables we defined earlier. Note that initialConcentration

is 10 for a and 1 for L as required. There is no initialConcentration for C so it is assumed

to be zero.

< l i s tO f S p e c i e s>

<s p e c i e s id=”a” compartment=”default compartment ” i n i t i a lCon c en t r a t i o n=”10”

hasOnlySubstanceUnits=” f a l s e ” boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

<s p e c i e s id=”L” compartment=”default compartment ” i n i t i a lCon c en t r a t i o n=”1”

hasOnlySubstanceUnits=” f a l s e ” boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

<s p e c i e s id=”C” compartment=”default compartment ” hasOnlySubstanceUnits=” f a l s e ”
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boundaryCondition=” f a l s e ” constant=” f a l s e ”/>

</ l i s tO f S p e c i e s>

The listOfParameters contains the forward and reverse rate constants kf and kr:

<l i s tOfParamete r s>

<parameter id=” kf ” constant=” true ”/>

<parameter id=”kr” constant=” true ”/>

</ l i s tOfParamete r s>

Finally, the list of reactions contains a single reaction with id J0 (generated automatically).

This reaction is where much of the complexity in the SBML encoding comes from. The kinetic

law is described using yet another standard, MathML (https://www.w3.org/Math/), which

is an XML standard designed for representing mathematical expressions. It is useful to

reuse other standards in order to build on prior work (i.e. avoid “reinventing the wheel”).

However, MathML is itself a complex standard, and this thesis will not endeavor to cover it

here. It is sufficient to assume that mathematical expressions can be expressed, somehow,

in this standard without concerning ourselves with the details of the representation.

Ignoring the large chunk of MathML, it is clear that SBML consists of compartments,

species, reactions, and parameters, and that these elements are organized into lists in the

document. Many other types of elements are possible (particularly if extensions are used),

but the aforementioned four element types are the most common in SBML. When broken

down and analyzed in this way, SBML is really a very simple and transparent standard. We

can already begin to see the advantages of SBML over Matlab. For example, the organization

of elements into lists makes it easy to write a script to read the number of reactions in a

model and print them out one–by–one, whereas otherwise this information would be buried

in Matlab source files and would require a great deal of effort to parse with a script (possibly

by matching certain patterns, which is a fragile approach).

CellML [74] is also an XML standard for storing biological models. Whereas SBML is

designed to represent chemical reaction networks, CellML is designed to represent physiolog-

ical models. Accordingly, CellML does not use “reaction” elements, since the higher–level

physiological processes encoded in CellML rarely contain a reaction–by–reaction description

of the process’s biochemistry. Instead, all rates of change are encoded using ODEs. Unlike

https://www.w3.org/Math/
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SBML, CellML is designed in tandem with its own normative simulator, OpenCOR [104]

(SBML does not have a normative simulator — instead it has a comprehensive test suite

that tests simulator compliance with the standard). Since CellML is not heavily used in this

work, it is only mentioned in passing here.

2.1.2 Antimony

Though technically not a standard, Antimony is a human–readable abstraction of SBML that

is used used extensively in this chapter. A major problem with the above SBML example is

that, even for a trivial model, the SBML encoding is too cumbersome to write by hand. There

are libraries to assist with reading and writing SBML [48, 165, 82], but another approach is

to create a scripting language that can be interconverted with SBML. Antimony is such a

language 4. The previous LacI binding model can be expressed in Antimony as follows:

model mymodel

a + L -> C; kf*a*L - kr*C

a = 10

L = 1

end

Clearly, this is considerably more parsimonious than the SBML encoding shown previously (5

lines for Antimony vs. 47 for SBML). However, this code can be interconverted with SBML

using the Antimony library / Python package. Thus, any edits made to the Antimony code

will be incorporated into the SBML model.

2.1.3 SED–ML

The SED–ML standard is closely tied to SBML and CellML. Whereas SBML and CellML

describe models, SED–ML describes how to simulate models. This can include specifying

4Technically, Antimony is not a scripting language. It is a human–readable abstraction of SBML. However,
Antimony fulfills the same role as a scripting language: it provides simple syntax to mask underlying
complexity.



www.manaraa.com

44

what algorithm should be used for simulation, whether the model should be simulated over

time or simply used to calculate the steady state, and specifying all parameters used by

the algorithm(s). The main motivation for storing this information is to enable automated

reproduction of a previous result without human intervention. For example, if a researcher

wishes to recreate a previously published figure, the researcher can download the SBML

model from the BioModels data. However, the researcher must manually guess what simula-

tor parameters (e.g. integrator step size) are required to reproduce the figure. Additionally,

different figures may use different parameter values. Ideally, this would be noted in the orig-

inal paper, but this is not always the case. SED–ML captures these algorithmic details to

enable fully automatic reproduction of a previous result, and also provides a few additional

features discussed in the examples in this chapter.

2.1.4 SBOL

Though not used extensively in this chapter, the Synthetic Biology Open Language (SBOL)

[102, 30] is an important standard for biological parts. SBOL stores sequence data along

with information describing the biological parts it belongs to. For example, the LacI re-

pressor described previously could be stored as a sequence with the promoter region, ri-

bosome binding site, and terminator delineated and linked to corresponding standard se-

quences for each respective component. This is in contrast to older formats such as Gen-

Bank (https://www.ncbi.nlm.nih.gov/genbank/) that only store sequence. The iGEM Parts

Registry (http://parts.igem.org/Main_Page) contains over 20,000 parts. SBOL allows

users to better utilize these parts by providing hierarchical semantic information that can

be used by computer aided design (CAD) tools to help design plasmids to perform a certain

function. In a way, SBOL can be thought of as an advanced system for sequence annotation,

albiet one that uses a powerful linked–data approach to enable better informatics and design

approaches.

http://parts.igem.org/Main_Page
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2.1.5 COMBINE Archives

It is clear from the preceding few paragraphs that there appears to be a proliferation of

standards. In order to allow researchers to share their work with others, it is useful to have a

way of organizing and packaging together related work. This is especially true for SED–ML,

which relies on having an SBML or CellML file in tandem within the same directory in order

to reproduce a result. This is a case where it would be better from a usability standpoint to

have a single file, but this is problematic because SBML, CellML, and SED–ML are described

by different standards. COMBINE archives provide a solution to this problem by allowing

different standards to be packaged together in the same file. A COMBINE archive is essen-

tially a compressed file format (similar to a .tar or .zip archive) that contains metadata

describing the contained files and pointing to the respective standards they represent. For

example, if a COMBINE archive is created from a single SBML file and a single SED–ML

file, the metadata will have one entry for each with a pointer to each respective standard.

This metadata information can then be used to decide what to do with each entry when

opening a COMBINE archive.

2.1.6 COMBINE Metadata

A recent proposal has suggested using COMBINE archive metadata to also store annota-

tions [208]. This would allow storing annotation information in a uniform way across differ-

ent model types (SBML and CellML). Recalling that semantic annotations allow linking of

models to biology (by unambiguously identifying the exact biological molecules and cellular

structures represented by variables), this would be very beneficial for improving the utility

of models. By storing the annotation information in the COMBINE archive metadata, this

would serve to separate annotations from standards and allow more freedom for the evolution

of semantic annotations.

Having reviewed these important systems biology standards, we next proceed to examine

the role of standards in reproducibility.
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2.2 Background

One goal of systems biology is to construct and simulate large, multiscale models. Examples

include the Mycoplasma genitalium whole–cell model [145] and the central metabolism of

E. coli [201]. These models are often composed of many submodels. However, in order to

be useful, these submodels must be extensively validated to ensure good agreement with

experimental results. Typically, development and validation of a submodel is a very time

consuming process and thus necessarily is performed by respective experts of each biological

subsystem. Thus, an imminent goal of systems biology is to allow these different submodels

to be reused and combined. Indeed, without the ability to reuse existing models, constructing

larger models becomes impractical.

Being able to reuse tools and techniques developed by others is a hallmark of science.

Poor reproducibility of biomedical experimental studies has been recognized as a major im-

pediment to scientific progress [238, 204]. Much of the focus on poor reproducibility has been

on wet lab experiments. However, barriers to reproducibility is also a significant problem in

computational studies [225, 167, 197, 187, 314, 286]. In recognition of this problem, repro-

ducibility has become a central focus of scientific software [226, 258]. A similar problem

in poor reproducibility also exists for systems biology models. Difficulty in model repro-

ducibility can result from a published model not being deposited in a public repository or

from differences in the deposited model and the actual model used for published simulations.

In addition, it is difficult for researchers to utilize and modify public models because the

standards are not human–readable. This state of affairs creates barries to the continued

development of biological models.

The first aim of this thesis is to address reproducibility through the use of standards.

Reproducible computational studies must satisfy two requirements. First, they must be

transparent ; that is, researchers must be able to inspect and understand the details of the

model and the computational experiments. With transparency, researchers can check as-

sumptions and explore variations in computational studies. Second, computational studies
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must be exchangeable; that is, it must be possible for a study done in one computational

environment to be done in another computational environment and produce comparable re-

sults. For a study to be exchangeable means that other researchers can make use of and

build on the published results in their computational environment.

In order to be transparent and exchangeable, a computational model and any simulation

experiments must be encoded in a standard format that separates the reusable part of a model

and its simulations (i.e., parameters, processes, and kinetics) from the implementation used

to simulate it (i.e., the numerical methods and algorithms used to generate results). Models

can be described using the Systems Biology Markup Language (SBML) [131] or CellML [74]

standards. These standards support models based on ordinary differential equations (ODEs),

stochastic master equations, and constraint-based modeling [216, 217], partial differential

equations (PDEs, using the proposed geometry extension [11, 12]), etc. Simulations can

be described using the Simulation Experiment Description Markup Language (SED–ML)

[313], which encodes the types of simulations, either time-course simulations or steady state

computations, that should be run on a model. SED–ML allows specifying the exact numerical

algorithms needed to run a simulation using the Kinetic Simulation Algorithm Ontology

(KiSAO) [73], which includes widely used ODE (e.g., LSODA [231, 124], CVODE [69]) and

stochastic solvers (e.g., Gillespie direct method [108], Gibson algorithm [106]).

In order to facilitate exchanging models and simulations between software tools, SED–ML

simulations and SBML/CellML models can be packaged together using COMBINE archives

[36]. However, few authoring tools exist for SED–ML and COMBINE archives [38, 268].

Furthermore, existing resources require technical knowledge of standards, restricting use of

these standards by the modeling community at large. Therefore, an authoring tool is needed

that allows a wider range of users to create and edit COMBINE archives containing both

models and simulations. An authoring tool should satisfy five requirements:

1. It should represent the models or simulation specifications in a human–readable form.

2. It should allow the user to easily edit this human–readable representation.
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3. It should allow the user to provide narrative, annotations, or comments in order to

improve transparency.

4. It should translate the specifications into an implementation that can be used to run

simulations.

5. It must be capable of repackaging the model and/or simulation in a standard form that

is usable by other tools.

Tellurium Notebook environment was designed to satisfy these requirements, and it ex-

tends the literate notebook concept used by tools like Jupyter [243] and Mathematica [322] to

support community standards in systems biology. Whereas Jupyter notebooks contain code

and narrative cells, Tellurium adds a third cell type for representing models and simulations

encoded as standards. Our tool allows modeling studies to be constructed in a notebook

environment and exported using community standards. This workflow provides both trans-

parency, through a literate notebook, and exchangeability, through seamless, fluid support

for standards.

Tellurium supports embedding human–readable representations of SBML [281] and SED–

ML [67] directly in cells. These cells can be exported as COMBINE archives which other

tools can read. This human–readable representation is referred to as inline OMEX (after

Open Modeling and EXchange, the encoding standard used by COMBINE archives). Inline

OMEX cells operate in much the same way as code cells, i.e., they have syntax highlighting

and are executable. Executing an inline OMEX cell runs all SED–ML simulations in the

cell, producing any plots or reports declared in the SED–ML. A major advantage of this

approach is that it offers a means of authoring transparent, exchangeable modeling studies

without requiring technical knowledge of file format standards.
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2.3 Design and Implementation of Tellurium

Computational tools in systems biology typically focus on one of three major areas: author-

ing models, simulating models, or visualizing network–based depictions of models. Tellurium

is primarily a tool for authoring and simulating models. As such, it must satisfy certain re-

quirements in order to be useful for model construction. To construct a dynamical model,

it is necessary to translate biological measurements and observations into a mathematical

language that can be used to derive a set of differential equations. One method of construct-

ing dynamical models in systems biology is to survey the literature for known interactions,

rate constants, and parameters (the so–called “bottom-up” approach [155]). Thus, known

information about a system can be used to construct a list of reactions, concentrations, and

kinetic parameters, which, in turn, can be used to derive a set of differential equations. How-

ever, the list of known kinetic parameters is usually incomplete. Depending on the available

data, some parameters may have to be inferred indirectly, while others may be completely

unknown. A common method of addressing this problem is to perform parameter fitting, i.e.,

use a numerical optimization algorithm to minimize the discrepancy between the model’s pre-

dictions and available data by tuning parameters. To be useful, fitting parameters requires

prudent selection of which parameters to optimize, as well as the numerical algorithm(s) to

use and the upper and lower bounds for the selected parameters. As a result, parameter fit-

ting can require considerable expertise and forethought, although attempts have been made

to systemitize the process [151].

Tellurium’s principal feature is that it allows integrating standards such as SBML, CellML,

and SED–ML in a single, unified representation called inline OMEX cells. This approach

has the advantage of allowing users to encode models in these standards without necessarily

being technical experts in said standards. While Tellurium could in principle have been

designed to provide separate cell types for Antimony and PhraSEDML, a single, unified ed-

itable representation is a better solution for three reasons: 1) With a unified representation,

users are not required to know the technical boundaries between standards, 2) exchanging
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Table 2.1: Standards and terminology at a glance.

Standard / Technology Description

SBML and CellML Standards and respective file formats for systems biology models. Originally designed to

support ODE models, but have since expanded to cover other types of models.

SED–ML Standard and file format for specifying a simulation to be run over an SBML/CellML model.

Can specify simulation algorithm and parameters.

libSBML and libSEDML Import/export of respective standard–encoded files.

COMBINE COmputational Modeling in BIology NEtwork (COMBINE) is an initiative to coordinate the

development of standards (such as SBML, CellML, and SED–ML) and formats for modeling

in biology.

COMBINE Archive / OMEX A zip file–like container for standards covered by COMBINE. Also known by the moniker

OMEX (Open Modeling and EXchange format).

Antimony / PhraSEDML Human–readable representation of standards (Antimony for SBML/CellML and PhraSEDML

for SED–ML). Provided as software libraries that can interconvert between human–readable

form and standard encoding.

nteract Notebook viewer featuring code and narrative.

libRoadRunner Library / Python package for simulation of SBML ODE and stochastic models.

Jupyter An umbrella project for technologies for authoring, rendering, and supporting literate coding

notebooks. Provides a message protocol which can be used by any language to interface with

Jupyter notebooks.

Plotly [276] A set of software packages for rendering interactive plots using web technologies (HTML/-

Javascript). Used by Tellurium to provide high–quality plots in the notebook environment.

Tellurium Integrated Python environment that includes or supports all of the above technologies and

standards.

Integration is a major design goal of Tellurium. Tellurium brings together many different standards and technologies. These

include not only standards such as SBML and SED–ML, but also has human–readable representations of these standards

which have their own unique names (Antimony and PhraSEDML respectively). This table summarizes the principal

standards, terms, and technology used in Tellurium.

multiple related files between software tools is cumbersome and error–prone, hence a single

cell should be exportable as a COMBINE archive, and 3) spreading out model and simulation

specifications across different cells could lead to synchronization issues if a cell is updated

but not re–executed. Therefore, having a single cell type which is interconvertible with a

COMBINE archive provides the best way to author and exchange modeling studies.

In order to provide a unified representation of a COMBINE archive, it is necessary to

integrate many standards and software technologies. Table 2.1 shows the roles of the various

standards and technologies included in Tellurium. While the components in Table 2.1 can,

in principle, be used independently from Tellurium, they do not carry the same benefits for

reproducibility when used in isolation. Without integration, a user would need to be familiar

with the application programming interface (API) of each of the libraries in the workflow
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above.

Two very important technologies indicated in Table 2.1 are Antimony and PhraSEDML.

These are human–readable shorthand representations which can be converted to/from SBML

and SED–ML respectively (additionally, Antimony also supports converting to/from CellML

models, but elements may not necessarily have a one–to-one correspondence due to the fact

that Antimony was built specifically to represent SBML). These technologies form the basis

of Tellurium’s inline OMEX representation of COMBINE archives, which allows convert-

ing an entire COMBINE archive, including all contained models and simulations, into a

human–readable form. An inline OMEX cell is comprised of Antimony models enclosed

in model...end blocks and PhraSEDML instructions in the global scope. Since Antimony

models are delimited, each model...end block is automatically converted into an SBML

model. All PhraSEDML instructions at global scope are then converted into a SED–ML

file, which can contain multiple simulations and tasks. In the case where Tellurium is used

to import a COMBINE archive containing multiple SED–ML files, Tellurium will add the

headers %antimony and %phrasedml before each Antimony/PhraSEDML block. The head-

ers are followed by a pathname locating the file inside the COMBINE archive. While it

is not necessary to embed multiple SED–ML files in a COMBINE archive due to the fact

that SED–ML can specify multiple simulations and tasks, the scheme outlined here allows

Tellurium to gracefully interoperate in cases where multiple SED–ML files or a complex

directory structure within the archive is desired.

An often overlooked aspect of encoding models and simulations is connecting the math-

ematical entities represented by the processes in the model to physical, biological entities.

This can be remedied by encoding semantic content in models using the Systems Biology

Ontology (SBO) [143]. SBO is a vocabulary that contains a number of identifiers for linking

mathematical entities in models to specific biological entities such as enzymes and substrates.

SBO can also be used to describe mathematical concepts such as Michaelis–Menten kinetics

[139]. Antimony was developed before the widespread use of SBO, and so lacks native sup-

port for SBO annotations. However, support for SBO annotations is implemented as part of
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Tellurium’s inline OMEX syntax. Figure 2.1 shows an example of Tellurium’s SBO syntax.

These SBO terms are preserved when the SBML or COMBINE archive is exported.

Tellurium’s design is defined by three major features: providing software libraries nec-

essary for supporting reproducibility, integration of the steps in the workflow such that the

steps can be performed automatically, and providing an interface for authoring models and

visualizing the output of simulations. Table 2.1 shows the respective software libraries that

are used to perform these tasks.

Tellurium’s notebook interface, based on the nteract app [148], allows authoring and

editing of human–readable standards in a human–readable representation. The nteract en-

vironment is similar to Jupyter and supports Jupyter notebooks, but nteract is a complete

redesign of the notebook viewer front–end using the Electron framework [2], which allows

Web technologies to be used for desktop app development. Whereas Jupyter is a browser–

based front–end, nteract is a desktop app, which carries several benefits for interaction with

the host operating system [8]. Unlike Jupyter, nteract features: an installer and native file

menus, 2) a terminal-free installation procedure, 3) integrated support for publishing note-

books to GitHub, and 4) additional user interface (UI) features, such as sticky cells and

hidable cell input/output. nteract also aims for a more minimalistic user experience.

2.4 Using Tellurium to Accomplish Advanced Tasks with SED–ML

The benefits for reproducibility provided by Tellurium Notebook are demonstrated with the

following case studies. the first case study shows how to encode multiple parameter sets and

plot phase portraits. Explorations of parameter space are frequently done to determine if a

model is applicable to conditions beyond those in the original model, an important consider-

ation for testing model validity. The second case study evaluates if a model implementation

produces results that are comparable to those in the original study via a series of tests which

cover important dynamical properties of the model.
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Figure 2.1: A demonstration of Tellurium’s SBO syntax. This figure shows a model

of mitotic exit in budding yeast [312] available via the Biomodels repository entry

BIOMD0000000370 [213]. When the SBML for this model is imported, Tellurium auto-

matically extracts SBO identifiers for species, reactions, compartments, etc. and embeds

the identifiers in the Antimony code. These identifiers point to specific physical, biolog-

ical, or mathematical entities recorded in the ontology. For example, the first identifier,

SBO:0000290, refers to a compartment in physical space [163]. Other identifiers refer to

polypeptide chains (SBO:0000252) and protein complexes (SBO:0000297). These identifiers

appear inline in the notebook cell and can be edited by the user. The right panel shows the

transient response for this model from 0 to 120 minutes. This example is included with the

Tellurium notebook viewer version 2.0.14 and later (File→Open Example Notebook→Mitotic

Exit (Vinod)).
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2.4.1 Case study 1: Encoding post–processing and multiple parameter sets in combine

archives

In order to meet our requirements for reproducibility, it is necessary to visualize different

types of data, such as phase portraits. Furthermore, it is not sufficient to merely recreate

a simulation. Rigorous reproducibility requires the ability to test existing models under

a variety of circumstances (encoded as parameter sets). This first case study shows how

Tellurium can be used to encode multiple parameter sets in a COMBINE archive. It also

shows how COMBINE archives can be used to create phase portraits, which plot the transient

value of one system variable against another.

This case study uses a model of M phase control [214]. M phase is triggered by the

heterodimerization of cyclin (specifically the cyclinB in this model) and a cyclin–dependent

kinase (Cdk) to form M phase promoting factor (MPF). MPF has an activating threonine

phosphorylation site and two inhibitory phosphorylation sites (in this model, the two in-

hibitory sites are represented as a single inhibitory site) on the Cdk subunit. MPF is also

regulated by the phosphatase Cdc25 (which activates MPF) and the kinase Wee1 (which

inactivates MPF). MPF itself inhibits Wee1 and activaes Cdc25. Hence, it forms a pair of

positive feedback loops with its own regulators. The model contains 21 reactions and is

available via the BioModels repository (BIOMD0000000107 [80]).

Figure 2.2 shows a comparison of Tellurium’s human–readable representation of the M

phase control model and simulation versus the standard–encoded representations. Clearly,

readability is essential for model transparency. However, readability is essential for model

reuse as well. To demonstrate this this SBML–only model is converted into a COMBINE

archive containing both SBML portions describing the model and SED–ML portions de-

scribing the simulation. Tellurium’s human–readable format permits easy modification of

the published model and simulations contained in the COMBINE archive.

In order to create a SED–ML specification for this model, four steps in the workflow

(corresponding to distinct elements in SED–ML) must be defined: (1) model definition, (2)
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Figure 2.2: A comparison of Tellurium’s human–readable representation of a COMBINE
archive shown in a Tellurium notebook (A) and excerpts from the equivalent SBML (B) and
SED–ML (C) encodings. Tellurium’s in-line OMEX format contains human–readable repre-
sentations of both SBML and SED–ML (A). Here, SBML is represented by Antimony code
(with the definition of a single reaction in blue) and PhraSEDML (in red). (B) shows the
SBML encoding for a single reaction. The single–line human–readable form of this reaction
is highlighted in part (A) for comparison. The components of the Antimony syntax are as
follows: R23 is the reaction label, the reactant $UbE, with a dollar sign indicating a bound-
ary species, a => symbol, which indicates an irreversible reaction (reversible reactions can
be indicated with ->), the product UbE star, and the kinetic law comprised of everything
following the semicolon. Using the SBML encoding, it is difficult to modify the reaction
stoichiometry or kinetic law, whereas this task is easy in Tellurium. Finally, (C) shows the
SED–ML encoding corresponding to the human–readable simulation portion of this COM-
BINE archive. The simulation portion performs the following functions: first, two SBML
models are instantiated with different sets of parameters (in the original publicatuion [214],
the authors provided one set of parameters for oocyte extract and a different set for intact
embryos). Second, a timecourse simulation with an adaptive step size is attained by setting
the variable step size property of the simulation as well as appropriate tolerance values.
Finally, the simulation is run with the two different model instantiations and plotted with
representative state variables (active MPF, doubly phosphorylated/inactive MPF, and total
cyclin) to show the behavior of the two parameter sets.
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simulation, (3) task specification, and (4) output generation. For (1), models can be defined

in Tellurium’s human–readable format by referencing SBML or CellML files in the same

COMBINE archive, with the option of including parameter replacements. For (2), SED–ML

simulations can be either timecourse simulations or steady state computation, and can ref-

erence a specific algorithm (e.g., LSODA), or a generic implementation using KiSAO [73].

Tellurium uses predefined keywords such as lsoda (an ODE solver implementation [232])

to refer to popular implementations. In SED–ML, simulations are specified independently

from models. This allows model and simulation elements to be reused in different com-

binations. For (3), SED–ML uses task elements to describe these combinations. Finally,

the output elements of (4) can be plots or reports and allow users to access the output of

tasks. Tellurium’s human–readable format allows defining a SED–ML model by instantiating

the same SBML model with different parameter values (m in this example) using the syntax:

mymodel = model "novak" with param1=value2, param2=value2 ...

with the param/value pairs being replaced by the corresponding parameter ids and values

respectively. This syntax is used to instantiate two copies of the model, one with parame-

ter values for extract and another with parameter values for intact embryos [214]. Finally,

Tellurium can be used to encode integrator tolerances and encode an adaptive step–size

simulation in SED–ML. Figure 2.3 shows simulation results for both parameter sets.

This case study shows that Tellurium provides an efficient means of converting SBML

models into exchangeable COMBINE archives containing simulation components. Further-

more, COMBINE archives can contain important dynamical information about the model,

such as the behavior under the different parameter sets that were explored in this study.

2.4.2 Case study 2: Reproducibility through in–depth variational studies

Reproducibility requires that a model implementation produces results consistent with the

original study, especially if a different authoring tool is used. In order to provide criteria
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Figure 2.3: A demo of an SBML/SED–ML encoding contained in a COMBINE archive

showing two useful features of the encoding: Multiple parameter sets (A) and post–processing

(B). (A) Transient responses of M phase control [214]. This model was published with two

parameter sets. One set is based on measurements from Xenopus oocyte extracts (top)

whereas the other is based on measuremetns from intact embryos (bottom). (B) Phase

portraits of representative state variables in the model. These variables are chosen after [214]

and are as follows: total cyclin, doubly–phosphorylated MPF (PPMPF, the predominant

inactive form of MPF [214]), active MPF, and time. Each pair of variables is plotted in

this matrix. Y–axis variables are indicated in the rows of the plot and x–axis variables

are indicated in the columns. The title of each subplot is given in terms of x vs y, e.g.,

the top left subplot shows total cyclin on the x–axis vs active MPF on the y–axis. Phase

portraits can show transients (such as the initial response of total cyclin in the upper left

corner in blue, which starts at 100 and decreases to its normal range) as well as limit cycles

(exhibited by all three phase portraits in the upper part of (B)). The slope of a given region

of the phase portrait is useful for showing the relative rate of change of two quantities. The

green and orange curves show regions where one quantity changes rapidly with respect to

another. These regions correspond to the rapid rise in active MPF due to positive feedback

from MPF to its own self–activation, and the subsequent falloff of total cyclin due to cyclin

degradation via a ubiquitin pathway activated by MPF. The plot in part (B) is derived from

the parameter set for oocyte extract, corresponding to the top plot in part (A).
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for judging whether a model reproduction is consistent with the original, a set of testing

criteria is required, similar to the concept of unit testing in software. However, researchers

seldomly perform extensive checks on the dynamics of models before using them. This is

due in part to the lack of tool support for easily modifying and producing variants of models

and simulations encoded in exchangeable formats. Tellurium’s authoring features enable

modelers to encode dynamical unit tests in COMBINE archives, thereby providing a way to

verify that a model has been correctly reproduced.

This case study reproduces a highly–detailed model of syncytial nuclear divisions in the

Drosophila embryo [60] through testing the model’s dynamics under different conditions.

This model is biologically similar to the model in Case Study 1 [214] but is more detailed

(54 vs. 23 reactions) and is available as a pre–encoded COMBINE archive [266]. In many

insect species, the embryo enters a period of rapid mitotic division without cytokinesis [107]

immediately following fertilization. In Drosophila, 13 of these divisions occur within 3 hours

of fertilization [60]. MPF is again the main regulator of these divisions. Recalling that

MPF is a heterodimer of cyclin and Cdk, cyclin subunits tend to be the limiting factor

in complex formation, and are thought to regulate mitotic division. Cyclin availability is

controlled by the anaphase promoting complex (APC), which targets CycB for degradation.

However, in Drosophila, the levels of CycB appear to remain high during the first 8 mitotic

divisions [87]. This observation can be reconciled with known mechanisms by assuming

that CycB degradation only occurs in the vicinity of the mitotic spindle [60, 129, 242],

despite the absence of a nuclear envelope during the mitotic divisions. To account for this

hypothetical local degradation of CycB, the model artificially separates the cytoplasm into

two “compartments,” with a cytoplasmic compartment representing the cell and a nuclear

compartment representing the volume in the vicinity of the mitotic spindle.

The COMBINE archive encoding of this model by Scharm and Tourè [266] is used as

a starting point. This archive contains SBML derived from biomodel BIOMD00000001445,

5http://identifiers.org/biomodels.db/BIOMD0000000144
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which is intended to reproduce Figure 1 of [60]. However, the archive does not contain

more extensive tests of the model’s dynamics, such as whether the model can be used to

reproduce several other simulations described in the paper. The initial variant encoded by

the COMBINE archive and shown in Figure 2.4B and C is based on a model with a constant

level of the phosphatase String (which corresponds to a Cdc25 homolog in Drosophila),

whereas in reality String levels change over the course of the mitotic cycles. String regulates

MPF via a positive feedback loop, and has been shown to peak at the seventh or eighth

cycle of the mitotic divisions [60]. To account for this, Calzone et al. [60] posited that

String mRNA is degraded by a hypothetical factor “X,” causing the synthesis rate of String

to drop over time. Therefore, the SED–ML of the original COMBINE archive [266] was

modified as follows to include the synthesis and degradation of String. These modifications

to the original COMBINE archive allow the reproduction of Figure 3 of [60] by making the

following changes:

• Enable synthesis and degradation of String by setting the parameters ksstg=0.02 and

kdstg=0.015 respectively.

• Set the initial concentration of total String to zero by setting StgPc=0.

• Compute the total amount of unphosphorylated String by adding the rule

StgT := (1 - N*E 1)*Stgc + N*E 1*Stgn.

• Compute the total amount of String in the cell by adding the rule

StringTotal := StgPT + StgT.

Tellurium makes it easy to encode both the original variant, without String synthesis and

degradation, and the variant including these terms in a COMBINE archive [17]. Figure 2.4

shows the results of executing this COMBINE archive in Tellurium, and Figure 2.5 shows

logarithmic plots of the transient response. The dynamical test cases for this model have thus
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Figure 2.4: Using Tellurium to reproduce model variants in [60] and repackage as a COM-

BINE archive. To demonstrate the use of COMBINE archives for encoding model variants,

we began with a COMBINE archive describing a single variant of this model without String

synthesis or degradation [266], which reproduces Figure 1B of [60] (plots B and C here).

A variant was then created in Tellurium describing String degradation, which reproduces

Figure 3 of [60] (plots D through G here). Panel (A) shows the inline OMEX cell with the

Antimony code elided (it would belong in the model Model generated by BIOCHAM...end

block, where the ellipsis is currently shown). Everything after the end instruction is thus

PhraSEDML. Plots B and D show the transient response of the cytoplasmic compartment

of the model. Plots C and E show the nuclear compartment (defined as the spatial region

around the mitotic spindle). Plot F shows the levels of total String and its phosphorylated

state. Plot G shows the level of String mRNA and protein factor X, which degrades String

mRNA. Note the y–axis scale on plot G was manually adjusted to show the mRNA dynam-

ics. The subplots in this figure intentionally have different durations, after Calzone et al.

[60]. The model in [60] was authored using BIOCHAM [59]. Our model reproductions that

reproduce these plots are available as a COMBINE archive [17].
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been expanded to reproduce two simulations from two different variants described by the

original authors (Figure 1 and 3 of [60]), enabling better coverage of the model’s dynamics.

In order to gain insight into the regulatory mechanism controlling the mitotic divisions,

and understand the transitions that control the exact number of these divisions, Calzone et al.

performed a one–parameter bifurcation analysis [60]. Bifurcation analysis probes the number

and position of steady states and other types of attractors as a function of a parameter. The

oscillations shown in Figure 2.4 are the result of discrete division events, and the behavior

shown does not represent a limit cycle. However, the model can be shown to exhibit limit

cycle behavior by 1) removing all discrete events and 2) fixing the number of divisions by

introducing the variable C as a cycle counter. The number of nuclear compartments is then

given by N = 1.95C (1.95 is a scaling factor described in [60]). For a given cycle number C,

MPF exhibits limit cycle oscillations, although the amplitude and period of these oscillations

changes with the cycle number. At low cycle number, Calzone et al. observed that these

oscillations were dominated by the negative feedback effect of cyclin degradation, whereas

for large cycle number (C ≥ 12), positive feedback via control of phosphorylated MPF by

the kinase Wee1 and phosphatase String contributes to the oscillations.

SED–ML does not support bifurcation analysis, precluding us from reproducing that part

of the study in an exchangeable format. However, it is still possible to test the change in

regulatory shift from negative to positive feedback. Instead of a bifurcation diagram, the

limit cycle behavior of the original model is compared with a model variant with reduced

Wee1 and String activation and deactivation rates. This slows the timescale of the positive

feedback component of the model. Figure 2.6 compares the behavior of the original model

at early and late cycle numbers with the variant containing attenuated positive feedback.

Whereas the normal model exhibits stable limit cycle oscillations at both C = 1 and C = 12,

the oscillations in the attenuated model are transient at late cycles (C = 12) but not at

early cycles (C = 1). This observation suggests that String and Wee1 dynamics are indeed

crucially important for late cycle oscillations, but not for early cycle oscillations, confirming

the shift in regulatory mechanism. These simulations thus form a third set of unit tests for
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Figure 2.5: Comparison of logarithmic (bottom row of plots) vs. linear (top row of plots)

plotting of the transient response in Figure 2.4B, C, and G, along with an excerpt of the

relevant PhraSEDML code for plotting on logarithmic axes. Figure 2.4G, which is a plot

of String mRNA and hypothetical factor X, which degrades String mRNA, exhibits a large

dynamic range. Logarithmic plotting helps visualize the dynamic range of these quantities.

This is achieved in PhraSEDML by wrapping the quantities for x and y axes inside a log10

operation.
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the model, encoded as a COMBINE archive [19].

This case study shows that, using Tellurium’s editing capabilities, it is possible to create

an extensive set of unit tests for dynamical behavior of this model, which can be exported as

a COMBINE archive and imported into another tool as shown in Figure S1. Creating these

tests required a means of quickly editing and expanding upon both the SBML and SED–ML

embedded in the COMBINE archive. Tellurium’s notebook approach allows us to satisfy

these requirements, and provides an integrated workflow for testing the dynamical behavior

of the model.

2.4.3 Interoperability & Test Cases

In order to achieve the exchangeability requirement of reproducibility, broad standards com-

pliance is necessary. A small number of test cases, such as the first two case studies, is not

sufficient to ensure interoperability with other software. A number of COMBINE archive

exemplars from literature, other software tools, and our own archives were used during Tel-

lurium’s development. These archives are provided as a resource to other developers and

they are publicly available online. The test archives are structured to separate examples

with advanced SED–ML features from those with basic SED–ML usage, enabling tool de-

velopers to implement incremental support for the standard. S1 Table lists all test archives

and how to obtain them.

2.4.4 Advanced SED–ML Support

In order to address the requirement of broad standards compliance, Tellurium was tested

against a set of tests provided by the SED–ML Web Tools [38]. These tests utilize advanced

features of the SED–ML standard, and are designed to demonstrate the standard’s coverage

of different types of analysis. S2 Table lists all files used in this test set, and S4 Figure shows

the results of exporting these files to Tellurium and back again.
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Figure 2.6: Testing the shift in regulatory mechanism of mitotic oscillations. To verify the

observation [60] that the number of mitotic divisions in the Drosophila embryo is governed by

a shift from negative to positive feedback, all discrete events were removed and the variable C

was introduced such that N = 1.95C . The limit cycles produced by this eventless model (left)

were compared with those produced by a variant with attenuated positive feedback from the

regulators Wee1 and String (right). Attenuation was achieved by decreasing the rates of the

phosphorylation and dephosphorylation of Wee1 and String. The original model exhibits

stable limit cycle oscillations for both early cycles (C), which are putatively dominated by

negative feedback, and late cycles (E), which are putatively dominated by positive feedback.

The attenuated model only exhibits stable oscillations at early cycles (D), suggesting that

positive feedback does indeed play a role in late cycle oscillations (F). Our model reuse and

modification study is available as a COMBINE archive that reproduces the figure shown and

facilitates further modification and reuse [19].
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2.4.5 SBML Test Suite COMBINE Archives

The SBML Test Suite [18] is a collection of dynamical models along with expected trajectories

designed to test software tools for compliance with the SBML standard. Each test case

contains a SBML model, simulation parameters encoded in SED–ML, expected trajectories

encoded as a comma–separated values (CSV) file, and graphical plots for reference. Each of

these 1196 test cases was converted into COMBINE archives containing the SBML models,

SED–ML simulations, and CSV expected results and used these COMBINE archives as a

benchmark for Tellurium’s support for standards. The results of this benchmark are shown

in S3 Table.

2.5 Enabling Web–Based SBML Tools

The contents of this section are largely based on a manuscript in

preparation for submission to Biosystems. The curriculum vitae

at the end of this thesis lists all manuscripts and resp. statuses.

The SBML [131] standard is used for encoding reaction network models in systems biology

research in a reusable, exchangeable, and future–proof manner. One of the factors behind

SBML’s wide adoption is the SBML standard’s process for introducing extension modules,

which allow incremental incorporation of new capabilities. While the core components of the

standard are designed for describing kinetic chemical reaction network models, SBML exten-

sions exist for encoding constraint–based models (the ”flux–balance constraints” extension,

employed by the widely used COBRA framework for constraint–based modeling [33, 269]),

and rule–based models (the SBML ”multi” extension [330]). SBML is used in several online

model repositories including BioModels [164, 168] and JWS Online [219, 229], which host

primarily kinetic reaction network models, and BiGG Models [154], which hosts primarily

genome–scale constraint–based models.

Despite this wide–spread adoption and inclusion in several online repositories, no feature–

complete JavaScript library currently exists that can run in a web browser (a native Node.js
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module exists, but cannot run in the browser). Thus, these online repositories must rely

on server–side processing of all SBML–related requests. A JavaScript library would allow

these services to offload some of their processing to the client, and would also allow for

more interactive features on the Web. Furthermore, the Web is becoming a major platform

for systems biology tools. With the advent of Web applications for pathway visualization

(Escher [153]), gene interaction network visualization (Cytoscape.js [98]), expression analysis

(ZBIT [250]) and integrated design systems (Caffeine [175]), the need for a JavaScript library

which can read and write SBML becomes imperative.

The first aim of this thesis is to enable reproducible modeling through standards. Provid-

ing standards support via a web–based library helps fill a critical gap in current approaches

to online model development. This section presents libsbmljs, a feature–complete JavaScript

library for reading and writing SBML in the browser and Node.js. libsbmljs uses the full

codebase of the libSBML C++ library compiled to the web using Emscripten, a toolset for

compiling C++ projects to the web. Emscripten emits WebAssembly [15], a W3C standard

for running platform–independent binary code on the web that is supported on all major

browsers. libsbmljs provides a JavaScript wrapper around this binary format that allows

the library to be used like a normal JavaScript package. The wrapper supports all SBML

Level 3 extensions, meaning it can read and write any type of SBML content. Since our

library runs in the browser, it does not require a dedicated web server. This is an important

consideration for academic software, where long–term maintenance cost is a concern.

2.6 Web Compilation of libSBML

Prior work on implementing the SBML standard has resulted in two libraries: libSBML

[48], a C++ library with interfaces for many languages, and JSBML [165, 82], a platform–

independent pure Java library. While the existence of these separate implementations is

certainly a convenience for C++ and Java developers respectively, it necessitates the main-

tenance of two independent libraries. Rather than attempt to create a third implementation

in pure JavaScript, libsbmljs is a web–capable interface for the libSBML C++ library created
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using Emscripten [328], a C++–to–JavaScript compiler. Despite its C++ origins, libsbmljs is

completely platform independent and runs on modern browsers on any device which supports

web standards.

Compiling a C++ library with Emscripten does not produce a ready–to–use JavaScript li-

brary automatically. Instead, Emscripten compiles to WebAssembly [252], a low–level binary

format similar to x86 machine code but with additional features for security and platform–

independence. Since WebAssembly is very low level, it is difficult to use to design JavaScript

web applications. Instead, Emscripten can be used to also compile a JavaScript interface

that abstracts the low–level details of calling into WebAssembly and instead allows develop-

ers to use familiar JavaScript objects and methods. However, this interface is not generated

automatically by Emscripten. Instead, it must be manually specified using WebIDL.

WebIDL is a World Wide Web Consortium (W3C®) standard that specifies interfaces

to EMCAScript (i.e. JavaScript) objects. For example, the libSBML C++ class SBase has

the method getId(), which returns a string. In WebIDL, this would be specified as:

/**

* SBase: the base class of

* most SBML elements

*/

[Prefix="libsbml ::"]

interface SBase {

/**

* Returns this element ’s

* id attribute

*/

DOMString getId ();

};

In the example above, the body of the getId method is intentionally left blank because it
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will delegate to the corresponding WebAssembly routine. Using syntax similar to the above,

WebIDL interface files were manually designed for every libSBML class and method. How-

ever, one issue remains with this approach. The comments entered into the IDL definition

above will not appear in the JavaScript interface generated by Emscripten. Thus, there is no

way of adding documentation to the generated JavaScript code, which defeats any attempt

to generate API documentation. To remedy this issue, a script is used to automatically

extract documentation strings from IDL files and insert them into the generated JavaScript

code. This allowed us to generate extensive API documentation using documentationjs, a

documentation generator for JavaScript.

2.6.1 Special Considerations for Usage

Emscripten–generated WebAssembly/JavaScript libraries are supported on a wide variety of

browsers and devices (https://github.com/libsbmljs/libsbmljs lists the browsers that have

been tested). However, there are minor differences between these libraries and regular

JavaScript libraries, which are described below.

Asynchronous Loading

Emscripten–generated libraries load asynchronously. In other words, the library cannot

be used immediately as soon as the web page has loaded. This is due to the fact that

Emscripten–generated libraries consist of both a JavaScript source file (.js) containing JavaScript

classes and methods, and a WebAssembly file (.wasm) containing the compiled C++ code.

The browser may load the JavaScript source file before completely loading and compiling

the WebAssembly file. In order to accommodate this, Emscripten libraries provide a ‘then()‘

method for the JavaScript module object similar to a JavaScript Promise. This method ac-

cepts a callback that will execute once the WebAssembly is fully downloaded and compiled.
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Manual Memory Management

Most modern languages feature some type of automatic garbage collection. However, We-

bAssembly is a low–level binary–like format, and hence does not provide high–level features

like garbage collection. This means that whenever the user creates an object in libsbmljs

using the new keyword, the user must also destroy the object using libsbml.destroy(obj).

In most cases, this simply amounts to destroying the SBML document when it is no longer

needed.

In terms of modern programming languages, this may seem like a significant regression,

but it is an unavoidable tradeoff when using C++ compiled WebAssembly, at least for

currently available technology (a proposal exists to add garbage collection to WebAssembly

[16], but an implementation is not available at the time of writing). In the event that the

user forgets to call the libsbml.destroy function, the allocated object will persist in the

browser’s memory until the browser tab is closed. Since our main target users are developers

of web applications, and browser tabs are short–lived, this is a significant concern. However,

Node.js developers should take care to destroy all created objects. The same requirement

also applies to libSBML’s native Node.js module.

2.7 Discussion

2.7.1 Tellurium’s Approach to Standards Support

In order for the conclusions of a research study to be valid, the models used in the study

must be reliable. Using SED–ML to reproduce the dynamics of a model and compare these

dynamics with expected values adds crucial value to the integrity and validity of studies

that reuse or expand on the model. As an exchangeable format, SED–ML is confined to

the intersection of the most common features available in dynamical modeling tools, which

leaves out certain useful types of analysis (e.g., bifurcation analysis). However, the use case

of SED–ML is not to serve as a replacement for current analysis methods. Instead, SED–

ML is a tool to test the dynamical behavior of models before using them. For example,
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Figure 2.7: (A) A workflow diagram of the process used to produce libsbmljs. The libS-

BML C++ source code and a hand–written WebIDL interface are processed by a Gradle

script to produce Emscripten–compiled bytecode and JavaScript API documentation. The

Emscripten bytecode is further compiled into separate JavaScript (*.js) and WebAssem-

bly (*.wasm) files. When the JavaScript source file is loaded by the browser, it executes

instructions to fetch the corresponding WebAssembly file asynchronously. These two files

are then combined into an npm package. (B) A screenshot of the demo page showing the

Repressilator model [88] in the BioModels database (BIOMD0000000012). After selecting

a model via using the demo’s search bar or uploading an SBML file, the demo allows the

user to view SBML content as a tree–like structure and validate the SBML model subject

to the validation options provided by libSBML. This particular model can be viewed at

https://libsbmljsdemo.github.io/#/view?m=BIOMD0000000012
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while Tellurium was not able to reproduce the bifurcation analysis of the mitotic division

study [60] in an exchangeable format, it was possible to verify the observations regarding the

shift in regulatory mechanism, and in doing so provided new insight from this alternative

approach. A researcher may also wish to verify that the model reproduces certain expected

behaviors. For example, if the model is expected to exhibit switch–like behavior, does this

behavior occur at the correct input threshold? For models with feedback, such as integral

feedback control [53], does the output exhibit robustness in the presence of perturbations?

These types of validation require expert knowledge of the system. While there are tools and

resources to help with this, the most important point for conveying this information to other

researchers is to encode it as transparently and lucidly as possible, which is achieved using

the literate notebook approach described here.

Tellurium’s approach of blending standards with literate coding enables researchers to

create rich, detailed workflows incorporating community standards. Tellurium allows the

models and simulations from these notebooks to be shared with other tools via COMBINE

archives. This allows other users to import these models and simulations and reproduce them

using independently developed software tools. This is consistent with our original definition

of reproducibility, as it enables robust cross–validation of results between tools, as opposed

to simply repeating a previous simulation. It also helps ensure that the tools themselves are

accurate and free of idiosyncrasies that could affect the analysis results. Model repositories

such as BioModels [164, 168], JWS Online [229, 219], and the CellML model repository [174]

have enabled widespread support for the SBML and CellML standards. Better tool support

for SED–ML and COMBINE archives will help create a trend toward better adoption of

these formats by repositories.

2.7.2 Comparison with Existing Software

Many dynamical modeling tools support exchanging models via the SBML format, including

COPASI [127, 199], SBW [40], iBioSim [207], PathwayDesigner [9], CellDesigner [100, 101],

VCell [205, 265, 45], CompuCell3D [293], PySCeS [218], BioNetGen [43], and PySB [176].
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These tools have diverse feature sets and intended use cases, such as tissue modeling (Com-

puCell3D), rule–based modeling of molecular complexes (BioNetGen, PySB, VCell), and

general modeling and simulation (all others). The tools also have different forms of user in-

teraction, such as graphical user interfaces (COPASI, iBioSim, VCell) and graph–based net-

work editors (CellDesigner, PathwayDesigner). Python–based tools such as PySCeS [218]

and PySB [176] can be used with a Jupyter notebook, but do not feature integration of

standards with the notebook itself. In general, Tellurium is useful when the user wishes to

interactively edit and test standard–encoded models and simulations or produce presenta-

tions and PDFs of modeling studies.

Tellurium’s Python foundation makes it easy to combine with other Python–based soft-

ware such as PySCeS, COBRApy [86], and PySB. There are also many specialized Python

packages for specific tasks such as moment closure approximation for stochastic models [94],

parameter estimation [292], Bayesian inference [171], and estimating rate laws and their

parameter values [299].

In biomedical research, certain tools have been created specifically to facilitate repro-

ducible research. One such tool is Galaxy [112]. Galaxy is a web–based tool which allows

users to create workflows describing experiments, e.g., metagenomic studies [235]. A similar

tool with a focus on web services and which supports SBML–based workflows is Taverna

[215]. Galaxy and Taverna allow users to annotate each step of the workflow, which provides

a way for others to follow and understand the chain of reasoning used in the workflow’s

construction. This satisfies the requirement of transparency, as it allows users to view the

sequence of steps used to produce a result. Although this approach is very different from a

literate notebook in terms of the way the user interacts with the system, it shares the goal

of allowing the user to see the sequence of steps used to produce a result and interrogate the

specific procedure used in each of the steps. Galaxy and Taverna also allow users to share

workflows via the web. However, neither tool attempts to directly address the problem of

exchangeability with other software tools.

VisTrails [58] is another workflow system based on visual design. VisTrails focuses pri-
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marily on generating rich, three–dimensional diagrams and visualizations based on input

data and a specific sequence of steps. VisTrails also saves all changes made to a workflow

and allows users to view previous versions, a concept termed “retrospective provenance”

[233]. However, this approach also lacks exchangeability. Furthermore, while graphical tools

may be more accessible because they abstract away the underlying algorithms, it can be dif-

ficult to isolate and correct software errors when a step fails due to bad input or an internal

error.

Many other research software systems make use of notebooks, and some incorporate

special extensions. StochSS [83], the GenePattern Notebook [249], the SAGE math system

[92], and the commercial Mathematica software [322] all utilize notebooks which are specially

tailored or feature special extensions for each respective application. However, none of these

approaches attempt to solve the problem Tellurium addresses: workflow integration with

exchangeable standards. Our usage of the literate notebook approach is intended to satisfy

two specific requirements, which are distinct from other use cases: 1) to make these standards

easy for humans to read, understand, and modify, without requiring expert knowledge of

the technical specifications of the standards, and 2) provide an integrated workflow which

facilitates exchangeability with other software.

The notebook approach used by Tellurium also has disadvantages. For example, while

notebook files can be stored in a version control system, diffing and merging these files is

difficult because the files are not line–based. Furthermore, large or complex analyses can

be difficult to orchestrate using notebooks, as interacting with a large notebook with many

cells can be cumbersome. For this reason, Tellurium is also distributed as a set of Python

packages. When a workflow becomes too difficult to manage in a notebook environment,

users can easily resort to separate Python, Antimony, and inline OMEX files in order to

include the existing work in a more manageable system or to include the work in a version–

controlled repository. Nevertheless, Tellurium’s approach is highly useful in many crucial

use cases, including testing models, experimenting with model variants, and as a final step

in producing an analysis for other researchers in a transparent, visual presentation.
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2.8 Review of Contributions

This chapter of the thesis described a platform for reproducible modeling and the supporting

technologies. Due to the myriad of different technologies involved, it may be difficult to distill

the core contributions. Therefore, they are summarized here:

• Development of a notebook–based approach to working with standards, along with an

implementation of said notebook system.

• Creation of a unified format for representing COMBINE archives in human–readable

form (inline OMEX).

• Demonstration of the robustness of this system via a number of examples and tests.

• Finally, the creation of a JavaScript library that can read and write SBML in the

browser in order to support web applications using standards.
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Chapter 3

PARAMETER ESTIMATION VIA THE ISLAND METHOD TO
ENABLE SCALABLE MODELING

The contents of this chapter are based on a manuscript in prepa-

ration for submission to Briefings in Bioinformatics. The cur-

riculum vitae at the end of this thesis lists all manuscripts and

resp. statuses.

Parameter estimation is a critical step in the construction of kinetic models. It is also

a major impediment to scalability. Kinetic models become expensive to simulate as the

size of the model increases. Additionally, increased dimensionality of the parameter space

requires more objective function evaluations in order to achieve convergence. Thus, there

are two factors that negatively impact scaling for kinetic models: simulation speed and

dimensionality. The combination of these factors effectively creates an upper limit for the

size of kinetic models. This is one reason why genome–scale models are often constructed

using constraint–based modeling.

However, kinetic models are necessary to study the mechanisms behind transient biolog-

ical processes such as signaling cascades and circadian rhythms. Thus, there is an impetus

to improve the optimization of kinetic models.

Parameter fitting for kinetic models requires solving a non–convex, non–linear optimiza-

tion problem, which defeats many optimization algorithms. However, one class of algorithms

that is able to solve this problem is biologically–inspired population–based algorithms. A

population–based algorithm maintains a pool of candidate solutions and improves the pool

as a whole over time. Such algorithms are usually designed to balance convergence toward

the minimum with diversity of the solution candidates. This class includes population–based
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Figure 3.1: A visual depiction of the island method. A cluster containing a number of nodes
(machines) and CPUs (one per processor core on each machine) is initialized randomly with
a seed population. Each CPU maintains a population of solution vectors corresponding to
one island. At the end of k iterations of the local algorithm (which can be different for each
CPU), the best M solutions obtained so far are exchanged among CPUs on the same or
different machines.

methods such as genetic algorithms (GAs) [76], differential evolution [290], particle–swarm

optimization (PSO) [275], harmony search [105], the artificial bee colony algorithm (ABC)

[144], and many others.
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# initialize populations for all threads

initialize_pop()

# run update loop on each cpu core in the cluster

for each thread:

run local_algorithm k times

send top_solutions to other_cpus

update population with incoming_migrants

if stopping_criterion:

stop

else

repeat

Figure 3.2: Island method pseudocode. The island method runs locally on a number of

threads, which can be on different CPU cores or different machines (the total number of

threads should not exceed the total number of CPU cores in the cluster). In every update

loop, the island method first runs the local algorithm (e.g. DE, ABC, etc.) for k iterations

on each thread separately. Next, each island i sends its top l solutions to neighboring islands

and receives up to l ×m solutions from neighboring islands, where m is the connectivity of

island i. This process repeats until a stopping criterion is reached (the objective function

reaches a threshold value or the maximum number of iterations is exhausted).

3.1 Parallelization Approaches

The parallel nature of population–based methods lends these algorithms to efficient paral-

lelization [61]. However, modern cloud–based computing is best suited for algorithms that

can be efficiently parallelized across nodes on a network. From an implementation perspec-

tive, this creates unique challenges that are not present in multithreaded parallelization such

as: how much data must be exchanged between nodes, how much synchronization is required,
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Figure 3.3: Two–dimensional plots of our five elimination benchmark functions. These

functions are analytical, and hence allow for testing a much larger number of combinations

than the BioPreDyn biochemical model benchmarks. The functions are analytic closed–form

expressions: Ackley (A) [20], Griewank (B) [113], Rastrigin (C) [244], Rosenbrock (D) [251],

and Schwefel (E) [237] functions. The plots are inverted so that the minimum value of the

function is at the highest elevation, which allows for better visualization.

and how can the system be made fault–tolerant? These issues can have a major effect on

the scalability of the algorithm.

One approach to parallelizing population–based algorithms is to simply distribute the

population update step across different nodes [203]. For example, in differential evolution,

new candidate decision vectors can be evaluated on different nodes and later combined to

form the complete population for a given iteration. This manner of parallelization offers a

potentially linear performance increase, and for this reason it is often used in multithreaded
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parallelization. However, certain factors limit the scalability of using this same approach for

distributed algorithms.

An alternative approach is the so–called generalized island method [135, 253, 42, 183]

(also referred to as the island model; this terminology is not used here because the word

“model” is reserved for biochemical models). The island method is a meta–algorithm that

parallelizes optimization by running different copies of an optimization algorithm (or different

algorithms) on different nodes in the network. This is based on the biologically–inspired

principle of punctuated equilibria [70], which states that isolated, independently–evolving

populations tend to quickly reach equilibrium, and that once genetic equilibrium is reached

there is little further genetic drift, leading to stagnation.

In the island method, islands running on different nodes periodically exchange solutions,

thereby preventing stagnation and leading to better solutions. If the migration is based

on the best individuals in each island, the method also exhibits accelerated convergence

compared to a single island working alone. Additionally, the island method allows reusing

previously existing algorithm implementations. The PaGMO2 library [42, 221], which is used

in the optimization scheme described here, provides implementations for 14 global and 16

local fitting algorithms, which was possible in part because of pre-existing implementations

of the algorithms.

The island method has been applied to various diverse optimization problems such as

nuclear power plant feedwater monitoring [228], vehicle routing [141], and trajectory planning

for spacecraft [42, 135]. This section of the thesis applies the island method to a set of very

large, challenging dynamical models from systems biology [311] in order to quantify the

performance of different algorithms and the performance gains due to parallelization using

the island model. The distributed island method is able to accelerate parameter fitting and

obtain better solutions for all models tested. As expected, the island method scales sub–

linearly, but nevertheless provides a substantial improvement to performance and quality

of fit. Our approach is completely asynchronous and uses very little network bandwidth,

making it in principle an ideal candidate for scalling to massive numbers of nodes, even if
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the maximum bandwidth of the network infrastructure is low. A reusable implementation of

the software is available at https://github.com/distrib-dyn-modeling/sabaody. This

software can be easily installed on cloud services such as Amazon Web Services (AWS) and

Google Compute Engine.

3.2 Survey of Population–based Algorithms

Here, we briefly review the different population–based optimization algorithms used in this

work. All algorithms used here are implemented in the PaGMO library, version 2 [42, 221].

3.2.1 Genetic Algorithms

One of the first biologically–inspirated population–based algorithms to be described, genetic

algorithms attempt to mimic the natural process of evolution [162]. The algorithm consists

of a population of “individuals” that each have genetic information encoding a candidate

solution to the optimization problem. In this work, we are interested in finding parameter

values for a model (called the “decision vector”, see glossary) that minimize an objective

function (in this work, the root mean square of the residuals of a timecourse simulation, or

RMSE value).

Genetic algorithms allow the population to evolve by selecting individuals based on fit-

ness (i.e. lower objective function value). Individuals with a better fitness (lower objective

function) value have a higher chance of being selected. This ensures that the population ap-

proaches the objective function minimum over time, but it also provides robustness against

being trapped in local minima because individuals with poor fitness values have a non–zero

chance of being selected.

Genetic algorithms consist of a number of iterations. At each iteration, a new population

is constructed from the old population. Though variants exist, most genetic algorithms use

the following processes:

1. Start with a total population of N random individuals.

https://github.com/distrib-dyn-modeling/sabaody
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2. Select a pool of M < N individuals randomly, giving preference for individuals with a

better fitness score.

3. Combine the M individuals using the crossover and mutation operations below to

produce a new population of size N .

(a) Crossover: With a certain probability, select two individuals i, j and a random

point P in the artificial chromosome (decision vector). The point P divides the

chromosome into two halves. Combine the first half of the chromosome of indi-

vidual i with the second half of the chromosome of individual j to form a new

individual k with the new chromosome. Optionally, allow crossover to occur at

multiple points.

(b) Point mutation: With a certain probability, select an individual i to undergo a

point mutation. The value of a single element of its decision vector (a single

parameter value) is replaced with a new, random value.

Genetic algorithms were the subject of intense research in the 80’s and 90’s. One result of

this research is the differential evolution algorithm, which performs quite well for real–valued

decision vectors like the ones used in this work. Due to the success of differential evolution,

genetic algorithms, as originally described, are less popular choices for parameter fitting.

Nevertheless, they are still a subject of active research and are useful for problems that are

not amenable to differential evolution.

3.2.2 Differential Evolution

Differential evolution is a highly successful variant of genetic algorithms that has been suc-

cessfully used in very large, challenging problems such as parameter estimation in whole–cell

models [146] and performs well in the benchmarks presented here.

The distinguishing feature of differential evolution is that it uses combinations of three

individuals from the prior population via a difference vector to produce a new solution
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candidate [290] 1:

l = i+ F (j − k)

where F (0 ≤ F ≤ 2) is a tunable parameter and l is the newly created candidate. This

difference vector operation replaces the mutation and crossover operators used in classic

genetic algorithms. For each element of the decision vector (each parameter value), a random

choice is made whether to draw the value from l or i. The reason for the robustness of

differential evolution is not well understood, but the authors [290] speculate that the use of

a difference vector enables effective navigation of contours in the objective function. On a

given contour line, all solutions have equal fitness. The use of a difference vector allows the

algorithm to traverse a contour line without incurring a fitness penalty, thus enabling it to

explore the contained region more thoroughly.

3.2.3 Differential Evolution Variants: SADE and DE1220

One of the most highly desirable properties for a fitting algorithm is parsimony of tunable

parameters 2. Every tunable parameter must be assigned a value to achieve optimal per-

formance. Typically, these values are manually tuned for a given problem set, which is a

laborious and time–consuming process. For example, differential evolution, as originally de-

scribed [290], has two tunable parameters: F (the variation factor) and CR (the crossover

probability) 3. These values are usually set to reasonable defaults that are known exhibit

decent performance for a wide range of test problems, but their optimality for problems

outside the test benchmark is unknown (in this work, F = 0.8 and CR = 0.9 as provided

by PaGMO). Moreover, under this scheme, one must solve a fitting problem (by tuning the

algorithm parameters) in order to solve the original fitting problem (fitting the model).

1There are several variants of differential evolution that are classified based on the number of individuals
that are used to calculate the difference vector, the selection of the seed individual i, and the crossover
scheme. The variant used here is classified as DE/rand/1/bin using the nomenclature of [290]

2This refers to parameters of the algorithm itself, not the model being fitted.

3The population size may also be considered as a tunable parameter, but not for the purposes of self–
adaptation.
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It is therefore not surprising that methods have been developed to automatically tune fit-

ting algorithm parameters. One such method known as jDE uses a random sampling scheme

to perturb the values of F and CR [52]. However, this method does not take into account

whether these perturbations actually improve the convergence rate or not (in control theory

parlance, it is comparable to an open loop controller). Calling this scheme “adaptive” might

therefore be misleading, and hence it is not used here. Another variant, iDE, incorporates

the F and CR parameters into the artificial chromosome of the individuals. This scheme does

allow feedback, since F and CR values are selected by fitness over time, and it is denoted

by sade in Table 3.3 and the figures in this chapter.

Finally, this chapter also makes use of the de1220 algorithm provided by PaGMO 4. This

is a unique algorithm developed for PaGMO and is currently unpublished. It is essentially

a variant of iDE that also augments the artificial chromosome to include an integer that

represents the DE mutation variant. The variant of DE used in this chapter is rand/1/bin.

This string consists of three parts identifying the algorithmic variant:

• Selection: determines how to choose the seed individual i. Can be either rand or best.

• Arity: determines the number of individuals used to compute the difference vector.

Higher values have an averaging effect.

• Distribution: The mathematical distribution used to control the crossover rate. In

de1220 it can be either bin (binomial) or exp (exponential).

PaGMO’s implementation of de1220 can choose from 18 different configurations of the

above variant options, which are not discussed here. A complete list is available at https:

//esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html.

4https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html

https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html
https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html
https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html
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3.2.4 Mimicking Animal Social Behavior: Particle Swarm and Artificial Bee Colony (ABC)

Algorithms

This section describes algorithms that have a different take on biomimicry. It might be argued

that natural evolution is a solution to an optimization problem of some sort (optimizing

species for fitness for life on earth), but there are other scenarios where optimality is critical

to survival. Examples include a flock of migrating birds, which must reach their destination

with a minimal expendature of energy, or a swarm of insects searching for food sources.

While the connection between these scenarios and the optimization of science or engineering

problems is tenuous at best, algorithms inspired by flocking behavior have certainly proven

useful for certain applications.

3.2.5 Other Population–Based Algorithms

Other population–based algorithms include simulated annealing and harmony search. These

are only briefly covered here. For a more complete description of simulated annealing and

harmony search respectively, see Corana et al. [72] and Geem et al. [105].

Simulated annealing is inspired by the process of annealing in metallurgy, wherein the

heating and slow cooling of a metal allows impurities to be excluded by diffusion, thereby

allowing growth and purification of the crystal grains of the metal. Diffusion occurs as a

result of stochastic brownian motion. Simulated annealing operates analogously by making

random perturbations to the decision vector. The magnitude of the perturbations depends

on the “temperature,” a numerical value that decreases over time. The system will eventually

settle in a state of minimum energy corresponding to an objective function minimum. Out

of all the optimization methods discussed here, simulated annealing is the only one with

theoretically proven convergence properties. However, in practice, its performance is much

worse than any of the evolutionary or swarm–based algorithms, so it is not used in this

chapter.

Harmony search gains its name from a group of musicians improvising a melody. When
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creating a new solution candidate, harmony search combines previous candidates as in the

case of genetic algorithms. However, unlike genetic algorithms, which combine two solutions

(or three in differential evolution), harmony search uses a combination of many solutions in

its “repotoire” (harmony memory) to generate a new candidate.

3.3 Description of Benchmarks

The main objective of this chapter is to test whether the island method can improve the con-

vergence time and solution quality for large, challenging dynamical models, and to quantify

the performance of different algorithms and algorithm combinations. In order to perform

these tests, a series of three benchmarks were used. The first benchmark exists to nar-

row down the combinatorial complexity of the different configuration options for the island

method. This allowed us to run the remaining benchmarks in a realistic timeframe. The

second benchmark tests the scaling and convergence performance of the island method on

more challenging problems from the BioPreDyn benchmark, a set of large, challenging ki-

netic models. Table 3.2 summarizes the benchmark problems in this suite. Finally, the third

benchmark, examines the performance of different algorithms and combinations. Partition-

ing the benchmarks in this way allowed us to test the main objectives in turn while keeping

the number of different configurations within feasible limits.

The island method is highly configurable. In addition to specifying potentially different

fitting algorithms for each island, the migration routes between the islands can be connected

in any arbitrary topology. Although the system allows for fully customizable user–specified

migration topologies, the implementation discussed here provides a set of 15 default topolo-

gies that can be generated automatically for any island number. These topologies are listed

in Table 3.1. Since PaGMO2 contains 14 global and 16 local optimization algorithms, there

are 30 · 15 = 450 algorithm / topology combinations to choose from for a given number of

islands, not including algorithm combinations. Additionally, the island method can be used

with different migration policies. This work uses a policy that selects the best M individuals

from a source island, and replaces the worst M individuals in the destination island if the
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Table 3.1: Topology presets included with the implementation. These presets can be used

to generate a topology for any number of islands (except the hypercube, which requires that

the number of islands be a power of two).

Topology

One-way Ring

Bidirectional ring

Bidirectional chain

Lollipop

Rim

1–2 Ring

1–2–3 Ring

Fully Connected (Complete Graph)

Broadcast

Hypercube

Watts-Strogats

Erdös-Rényi

Barabási-Albert

Extended Barabási-Albert

Extended Ageing Barabsi-Albert

More detailed information, including topology illustrations, is available at https://

sabaody.readthedocs.io/en/latest/topologies.html.

replacement candidate has a better (lower) score. Another strategy is random selection and

replacement, which can lead to more genetic diversity but has a less pronounced acceleration

effect.

This large combination of options requires a systematic test to eliminate configurations

that are unlikely to perform well. A set of 1120 benchmarks using different algorithm and

https://sabaody.readthedocs.io/en/latest/topologies.html
https://sabaody.readthedocs.io/en/latest/topologies.html
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Table 3.2: Benchmark problems from the BioPreDyn suite. Four problems from the BioPre-

Dyn benchmark suite [311] were used in this chapter. The original BioPreDyn suite contained

a total of six problems [311]. However, B5 and B6 were not provided in a simulatable SBML

format, nor indeed any standard, exchangeable format. An SBML qual package encoding of

B5 was provided, but a qual encoding does not provide enough information to simulate the

model. Additionally, the B6 model was based on spatial processes and thus would not have

been usable with this workflow even if an SBML encoding had been provided.

Param. Obs. Description Data / noise process

B1 1759 44 Genome–scale model of yeast Simulated Gaussian noise

B2 116 9 Central carbon metabolism

(CCM) in E. coli

Experimental measurements

B3 178 47 Central carbon metabolism

(CCM) and select transcription /

translation processes in E. coli

Simulated with no noise

B4 117 13 Fermentation in Chinese Hamster

Ovary (CHO) cells

Simulated with time–varying

Gaussian noise

topology combinations was constructed based on five analytic objective functions plotted in

two–dimensions in Figure 3.3. These analytic functions have a much lower computational

cost than the BioPreDyn biochemical benchmark models, and are often used to evaluate

newly developed nonlinear optimization algorithms. This set of tests is referred to as the

elimination benchmark.

Table 3.3 shows that algorithm choice is more strongly correlated with performance than

topology in these tests. Therefore, subsequent benchmarks focused on the effect of algorithm

choice. The second test consists of benchmarks of problems B1 and B3 from the BioPreDyn

suite [311] on the same topology / algorithm combination while varying the number of islands.
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Table 3.3: Ranking of the elimination benchmark problems. The bottom row shows the

mean difference between the highest and lowest ranking.

Topology Range Algorithm Range

Hypercube 1–9 de1220 2–4

Rim 2–8 de+nelder mead 1–8

Bidirectional ring 4–7 bee colony 1–10

Bidirectional chain 1–11 de+praxis 2–9

Barabási–Albert [21] 1–13 de+sade 4–7

1–2 Ring 3–12 sade 2–9

Broadcast 1–14 de+de1220 4–9

Fully Connected 2–13 de 6–8

One–way ring 7–8 de+pso 7–10

1–2–3 Ring 4–12 de+nsga2 8–10

Ageing Extended Barábasi–Albert 6–10 pso 11–14

Erdös–Rényi [91] 3–14 ihs 11–14

Extended Barabási–Albert 5–12 xnes 11–14

Watts–Strogatz [318] 5–14 nsga2 12–14

Avg. diff. 8.00 Avg. diff. 3.81

These problems are expensive, but also provide a way to critically test the convergence

properties and performance of the island method. Next, different algorithm combinations

were run on problems B2 and B4 from BioPreDyn. The purpose of this test was to look for

trends in algorithm performance, and to investigate whether a “synergistic” effect could be

observed from combinations of different algorithms.
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3.4 Details of Each Benchmark

3.4.1 Elimination Benchmark

Ten–dimensional versions of the functions in Figure 3.3 were run for three replicates on the

combinations of topologies and algorithms shown here. In some cases, algorithm combina-

tions were used, such as de+sade. In such cases, the algorithms were alternated along the

topology structure if linear or ring–shaped, or arbitrarily distributed otherwise (e.g. hyper-

cube and random graph–based models). However, once assigned, the algorithm positions

were not changed for the duration of all benchmarks. Results were grouped by topology and

algorithm/combination respectively and independently ranked for each of the five problems

according to the total number of rounds required for convergence. A lower score implies that

the benchmark finished in fewer rounds. This benchmark consisted of up to 2000 rounds of

migration, each interspersed with 1000 iterations of the local algorithm on each node. The

fitting problem was terminated when the MSE of any decision vector dropped below a cutoff

value of 0.01 with respect to the best known solution. Migration was fully asynchronous.

3.4.2 Scalability Benchmark

In order to quantify the performance improvement of the island method, problems B1 and

B3 from the BioPreDyn suite were benchmarked for various numbers of islands, but using a

fixed algorithm. B1 is a genome scale S. cerevisiae model whereas B3 is a model of central

carbon metabolism and transcription in E. coli. Both of these are large and challenging

models, with the original authors reporting ≈ 1–week fitting times for both [311]. Figure 3.4

shows that reasonable fits can be obtained in a day for B3 on a 16–core cluster.

3.4.3 Algorithm Benchmark

Table 3.3 suggests that combining local and global fitting algorithms can lead to better

performance than either type of algorithm individually. For example, de+nelder mead,

de+praxis, de+sade, and de+de1220 are all ranked better than de alone. To test whether
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this trend would hold for more realistic fitting problems, problems B2 and B4 from the

BioPreDyn suite were tested against different algorithms and algorithm combinations, and

the results were quantified in Table 3.4. Figures 3.5 and 3.6 show the value of the current

champion (the individual with the best fitness) in the population over time. Figures 3.7–3.14

show the best fits obtained and normal probability plots of the respective residuals.

3.5 Scaling Behavior

Figure 3.15 shows that the island method typically increases the quality of fit by a factor of

2 when going from 1 to 16 islands. However, in the case of B3, the quality of fit increases by

more than an order of magnitude. All problems except B3 have simulated or experimental

noise, which narrows the gap between the initial population and the final convergent solution.

When the fitness of the space of solutions spans several orders of magnitude, as with B3, the

island method does deliver more than an order of magnitude improvement when going from

1 to 16 islands.

There are two principal benefits of the island method. The first is due to elitism in the

migration scheme. In our implementation, each island sends its best scoring individuals to

neighboring islands. These individuals then improve the overall fitness of the population

during the next iteration of the algorithm. This helps increase the speed of convergence.

The second benefit is due to increased “genetic diversity” of the total population among all

islands. Having a diverse population of decision vectors is important for thoroughly exploring

the search space. In an island configuration with N nodes each having a population of size

M , the total number of individuals is N ·M . Instead of using the island method, one could

use a single algorithm with a total population size of N ·M to achieve equally good quality

of fit. However, the N islands operate in parallel whereas a single population would not (by

assumption).
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Table 3.4: Results for problems B2 and B4. The objective function value (score) and timings
are given as mean ± standard deviation.

Prob. Algorithm Num. islands Score ± std. dev. Hours Rounds Converged? Replicates

B2

bee colony
1 0.3± 0.0091 3.1± 0.11 1000.0± 0.0 No 3

16 0.34± 0.013 5.4± 1.8 1000.0± 0.0 No 3

de
1 0.31± 0.011 2.0± 0.0042 1000.0± 0.0 No 3

16 0.28± 0.004 2.0± 1.2 740.0± 450.0 Yes 3

de+nelder mead
1 0.32± 0.0075 2.0± 0.026 1000.0± 0.0 No 3

16 0.29± 0.016 3.1± 0.86 930.0± 130.0 Yes 3

de+praxis
1 0.32± 0.011 2.3± 0.0031 1000.0± 0.0 No 3

16 0.29± 0.019 2.0± 1.2 770.0± 400.0 Yes 3

de+sade
1 0.32± 0.0053 2.2± 0.013 1000.0± 0.0 No 3

16 0.28± 0.012 1.9± 0.88 660.0± 300.0 Yes 3

de1220
1 0.3± 0.012 2.0± 0.049 1000.0± 0.0 No 3

16 0.28± 0.012 0.62± 0.19 200.0± 120.0 Yes 3

sade
1 0.31± 0.0068 2.3± 0.028 1000.0± 0.0 No 3

16 0.28± 0.0011 3.3± 1.0 1000.0± 0.0 No 3

B4

bee colony

1 0.08± 0.0043 1.8± 0.71 500.0± 0.0 No 3
2 0.12± 0.02 1.1± 0.059 500.0± 0.0 No 3
4 0.12± 0.031 1.1± 0.007 500.0± 0.0 No 3
8 0.098± 0.008 1.1± 0.023 500.0± 0.0 No 3

16 0.089± 0.0073 1.1± 0.034 500.0± 0.0 No 3

de

1 0.086± 0.0074 0.76± 0.027 500.0± 0.0 No 3
2 0.076± 0.0051 0.84± 0.067 500.0± 0.0 No 3
4 0.07± 0.006 0.84± 0.061 500.0± 0.0 No 3
8 0.067± 0.0034 0.63± 0.35 380.0± 200.0 Yes 3

16 0.069± 0.0069 0.47± 0.34 290.0± 200.0 Yes 3

de+nelder mead

1 0.089± 0.0046 0.78± 0.035 500.0± 0.0 No 3
2 0.11± 0.015 0.82± 0.062 500.0± 0.0 No 3
4 0.074± 0.0091 0.75± 0.091 490.0± 15.0 Yes 3
8 0.084± 0.0034 0.79± 0.008 500.0± 0.0 No 3

16 0.076± 0.011 0.58± 0.37 370.0± 220.0 Yes 3

de+praxis

1 0.085± 0.0031 0.77± 0.032 500.0± 0.0 No 3
2 0.11± 0.0053 0.98± 0.31 500.0± 0.0 No 3
4 0.09± 0.013 0.82± 0.045 500.0± 0.0 No 3
8 0.088± 0.02 0.81± 0.056 500.0± 3.0 No 3

16 0.072± 0.0098 0.64± 0.29 410.0± 160.0 Yes 3

de+sade

1 0.088± 0.0028 0.76± 0.034 500.0± 0.0 No 3
2 0.084± 0.0074 0.82± 0.0099 500.0± 0.0 No 3
4 0.066± 0.0024 0.51± 0.27 330.0± 150.0 Yes 3
8 0.071± 0.007 0.67± 0.29 410.0± 150.0 Yes 3

16 0.07± 0.0098 0.41± 0.34 260.0± 210.0 Yes 3

de1220

1 0.083± 0.0064 0.71± 0.0091 500.0± 0.0 No 3
2 0.074± 0.0075 0.8± 0.024 500.0± 0.0 No 3
4 0.07± 0.0086 0.21± 0.11 140.0± 74.0 Yes 3
8 0.067± 0.0034 0.47± 0.28 300.0± 170.0 Yes 3

16 0.066± 0.00095 0.67± 0.31 400.0± 170.0 Yes 3

sade

1 0.088± 0.0051 0.78± 0.085 500.0± 0.0 No 3
2 0.099± 0.032 0.63± 0.033 500.0± 0.0 No 3
4 0.073± 0.01 0.42± 0.3 280.0± 190.0 Yes 3
8 0.072± 0.006 0.83± 0.043 500.0± 0.0 No 3

16 0.07± 0.0067 0.64± 0.31 390.0± 190.0 Yes 3

3.6 Comparison with Distributed Algorithms

In comparison with the island model, distributed algorithms divide a fixed amount of work

equally among N cores. Hence, when using 16 cores, a distributed algorithm would be
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expected to be 16x faster. The primary reason to prefer the island model over distributed

algorithms is the ability to re-use pre-existing algorithm implementations. If a distributed

implementation is available, it is usually preferred. Nevertheless, there are some cases where

this is not true. First, the bandwidth requirements of a distributed algorithm are much

larger than the island method.

For example, differential evolution forms new decision vectors from a linear combination

of three individuals from the prior iteration. For a population of size M with N nodes,

each node will evaluate M/N decision vectors and require 3M/N prior decision vectors to

be sent over the network interface, which imposes bandwidth requirements for the network

infrastructure. Our benchmarks used up to 2 million total iterations (2000 rounds of 1000

iterations) across a total population size of 16 · 300 = 4800. Assuming a decision vector

of length 100, double–precision, this equates to 20 Tb (terabits) of information that must

be sent over the network. In comparison, the island method using a migration rate of 4

individuals per island per round would require only 4 · 16 · 2000 · 100 · 64 = 820Mb. Whether

or not these requirements pose a limtation depends on the networking infrastructure used.

More importantly, distributed optimization algorithms must be re-implemented using

a distributed computing framework such as Spark [27] or Dask [23]. In many cases, an

independently–validated reference implementation of an algorithm is available in C/C++

for running locally on a single node, but not on distributed nodes. Thus, if a researcher

wishes to evaluate a given fitting algorithm using distributed computing, the researcher

must first re-implement the algorithm itself using distributed technologies. Since computing

frameworks like Spark [27] or Dask [23] are evolving rapidly, it is not known whether a

re-implementation will be rendered obsolete by technology changes, thereby re-creating the

same dilemma again in the future.

3.7 Hardware Specification

Our hardware used for this study consisted of two workstations with a 10–core Intel® Xeon®

CPU E5–2660V3 at 2.6 GHz with 24 GB RAM and a 6–core Intel® Xeon® CPU E5–2620V2
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at 2.1 GHz with 64 GB RAM.

3.8 Conclusions

The aim of this chapter was to develop an implementation of the island method and test

several hypotheses. Chief among the hypotheses was whether the island method is viable for

efficiently parallelizing fitting algorithms, which was verified to be true. The island method

provided considerable speedups for all benchmark problems tested here. The next hypothesis

was whether different local algorithms or combinations of algorithms have significant perfor-

mance advantages over a single, homogeneous algorithm configuration. The results shown

here indicate that there is little variability in algorithm performance for different problems,

and that combinations of different algorithm types (in a heterogeneous island configuration)

does not significantly enhance performance. This is in contrast to the results reported by

Villaverde et al. [310], which suggest that hybrid algorithms (combinations of locally conver-

gent and globally convergent algorithms similar to the heterogeneous island configurations

used here) do speed up fitting. However, Villaverde et al. did not test the highly performant

evolutionary algorithms used here (e.g. DE variants), and also report difficulty fitting the B3

problem, suggesting that their method may be sensitive to an abundance of local minima.

In summary, the results shown here indicate that the island method is a useful approach

when fitting large kinetic models, especially where the quality of fit is a major concern.

Algorithm and topology choice had only a minor effect on overall performance, which sug-

gests that a configuration consisting of the de1220 algorithm with the rim topology exhibits

reasonable performance across problems.
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Rounds 100 2000
Generations bet. rounds 1000 1000
Parameter range 0.1–10x 0.1–10x

(D) Results

Problem Num. islands Mean score ± std. dev. Replicates

B1

1 0.86± 0.072 3
2 0.61± 0.031 3
4 0.61± 0.022 3
8 0.61± 0.035 3

16 0.48± 0.033 3

B3

1 0.33± 0.0047 2
2 0.32± 0.22 2
4 0.045± 0.014 2
8 0.022± 0.0016 2

16 0.02± 0.00047 2

Figure 3.4: Convergence curves for problems B1 (A) and B3 (B) from the BioPreDyn–Bench
suite [311] for various numbers of islands. Each curve plots the best champion fitness (i.e. the
best solution up to the current time) per island over time. The settings for each benchmark
are shown (C). For a given number of rounds, table (D) shows that increasing the island
size yields an improvement in fitted parameters. As with BioPreDyn, the values of all fitted
parameters were constrained to 0.1–10× the nominal value. The fitness value in (A) and (B)
is computed from the root–mean–square deviation for each state variable normalized by the
state variable’s average (in B1, the values are also rescaled to balance error contributions).
Not all islands finish at the same time due to the use of variable–step integration in SBML
simulation.
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Figure 3.5: Convergence curves for problem B2 from the BioPreDyn suite. To test the

effect of different algorithms and combinations of algorithms on the convergence rate, the top

performing algorithms and combinations determined from the elimination benchmark were

employed in the next benchmark. Each trace represents the champion value (the individual

with the best fitness) for a single island running on 1 CPU core. Single island variants are

elided from combination benchmarks containing two or more algorithms.
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Figure 3.7: The best solution obtained by the island method for problem B1 from the

BioPreDyn suite after 100 rounds. This benchmark was not intended to run to convergence

due to the large size (1759 parameters) of the B1 model and corresponding long fitting time.

The objective function for this benchmark is calculated by normalizing the RMSE value for

each quantity to the reference RMSE value (for each quantity) and taking the RMS of the

weighted values.
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Figure 3.8: B1 normal probability plots. Residuals for each of the fitted quantities in

Figure 3.7 is shown as a normal probability plot. Residuals that lie along a straight line

are normally distributed. Theoretical quantiles for each quantity are plotted on the x axis

(calculated using the sample mean and variance), whereas the y axis shows the residual value.

100 rounds was insufficient to ensure convergence for this large (1759–parameter) model after

one day of fitting. Hence, some quantity residuals deviate from normally distributed values.
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Figure 3.9: The best solution obtained by the island method for problem B2 from the

BioPreDyn suite after 1000 rounds. The objective function for this benchmark is calculated

by normalizing the RMSE value for each quantity to the quantity mean and taking the RMS

of the weighted values. This objective function is slightly different from B1. Qualtities are

normalized to the means here whereas they are normalized to RMSE per quantity in B1.

The objective function so–calculated can be thought of as the “overall” RMSE and is ≈ 2%

for this fit (the B3 benchmark contains no noise).
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Figure 3.11: The best solution obtained by the island method for problem B3 from the

BioPreDyn suite after a maximum of 2000 rounds. The objective is calculated identically

to B2. The B3 model is an E. coli central carbon metabolism (CCM) model combined with

a limited gene regulatory model (hence the enzyme and regulator variables). This model

simulates diauxic shifts, which appear as discontinuities in most plots (esp. biomass).
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Figure 3.12: B3 normal probability plots. Residuals for each of the fitted quantities in

Figure 3.11 is shown as a normal probability plot. Residuals that lie along a straight line are

normally distributed. The B3 benchmark contains no noise, so residuals are not expected to

be normally distributed.
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Figure 3.13: The best solution obtained by the island method for problem B4 from the

BioPreDyn suite after a maximum of 500 rounds. The objective is calculated identically to

B3. The B4 model is a fermentation process in Chinese Hamster Ovary (CHO) cells. Lactate

is a by–product of fermentation, hence the divergent curve.
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Figure 3.14: B4 normal probability plots. Residuals for each of the fitted quantities in

Figure 3.13 is shown as a normal probability plot. Residuals that lie along a straight line

are normally distributed. The noise level in problem B4 is normally distributed with time–

varying variance.
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Chapter 4

ACCELERATED SIMULATIONS VIA SPECIAL–PURPOSE
HARDWARE

The contents of this chapter are based on a manuscript in prepa-

ration for submission to PLoS Computational Biology. The cur-

riculum vitae at the end of this thesis lists all manuscripts and

resp. statuses.

4.1 Introduction

Digital logic circuits have grown considerably in complexity since the inception of micro-

processors. This growth was made possible in large part by technologies that automate the

low–level record keeping, database management, routing, and placement of circuit compo-

nents [55]. Digital system designers have long used hardware description languages such as

VHDL (VHSIC Hardware Description Language) and Verilog to design the logic operations

of digital circuits. However, many important computing problems can benefit from analog,

rather than digital, circuit design. Important examples arise from the field of biomimicry, in-

cluding neuromorphic chips, which emulate biological neurons [133], and cytomorphic chips,

which emulate the behavior of cellular metabolic, signaling, and genetic pathways. This

section of the thesis uses a previously described programmable cytomorphic chip capable of

emulating a wide range of biological reaction networks much more efficiently than a digital

computer [324, 325]. However, configuring the chip for a given network currently requires

manual intervention, which is a tedious process that must be repeated for every new bio-

logical pathway. Whereas many design automation tools exist for designing digital hard-
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ware, tools for the design and modeling of special–purpose analog circuits are comparatively

rare. Circuit–simulation tools have been applied to neural biomimetic [166] and prosthetics

[35, 128] devices and for simulating neuromorphic chips [209]. VLSI–inspired methods have

been used in tools such as Cello [211] and iBioSim [180, 317] to verify genetic circuits, but

there does not appear to be any existing system which transforms a high–level biological

model (a chemical reaction network, in this work) into a low–level representation for run-

ning on programmable analog hardware. This section presents a cytomorphic compiler – a

software tool which takes as input biological pathway models in Systems Biology Markup

Language (SBML) format [131] and generates a cytomorphic chip configuration as output.

Our compiler provides a bridge from existing systems biology standards to cytomorphic hard-

ware, thereby increasing the versatility of special–purpose biomimetic hardware and bringing

biomimetic computing closer to practical actualization.

Models of biological networks play important roles in our understanding of disease biology

[227, 307], cancer [28], drug discovery [57], metabolic regulation [201], and many other sub-

jects. However, simulation of large kinetic network models continues to be a major challenge,

despite recent progress in high–performance simulation software [283, 118, 294]. The growth

in size and complexity of biological pathway models has exceeded the growth of simulation

hardware and software. In one study, a whole–cell M. genitalium model required 10 hours on

a 128 node Linux cluster in order to simulate a single cell cycle [145]. Large–scale examples

of kinetic simulations also arise in genome–scale kinetic models [279, 278]. Common simu-

lation bottlenecks arise in parameter fitting and calibration of models, which require many

simulations [146]. Thus, improvements in simulation performance are necessary for better

and more comprehensive model fitting and to enable larger, more robust models.

In many real–world computing tasks, the relevant metric for performance is not the total

computing power of the system, but rather the computations–per–watt. As demonstrated

by the major cryptocurrency Bitcoin, special–purpose, highly efficient hardware has largely

replaced graphics processing units (GPUs) as the main source of mining hardware. Special–

purpose mining hardware had 40 times the performance–per–watt of an AMD 7970 GPU
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in the year 2012, with further improvements occurring since that time. Cytomorphic chips

operate at tens of milliwatts, yet in many cases still perform equal or faster simulations

than desktop computers operating at tens of watts, representing a more than 1000–fold im-

provement in performance–per–watt. This efficiency improvement may be used to package

more units onto a die, thereby allowing more simulations to run in parallel. Thus, cytomor-

phic chips represent a simulation technology with a potentially larger growth potential than

conventional digital simulation tools.

The present work focuses on generalized, digitally–programmable cytomorphic hardware

described previously [325]. The hardware is designed to solve systems of ordinary differential

equations based on the observation that the concentration of a chemical species can be likened

to electrical current (see [325] for details). Thus, all biological model variables, including

species concentrations, parameters, and reaction rates are represented in the hardware by

current values. However, a näıve approach at solving ODEs in this way will encounter the

problem described in the next section.

4.2 The Divergence Problem

Consider the situation shown in Figure 4.1. This figure dipicts a kinase cascade the active

form of kinase A, represented as AP , which in–turn phosphorylates kinase B, with their

corresponding rates of change:

dA

dt
= −kfA

A

1 + A
+ krAA

P

dAP

dt
= k′fA

A

1 + A
− k′rAAP

dB

dt
= −kfBAP

B

1 +B
+ krBB

P

dBP

dt
= k′fB

B

1 +B
− k′rBBP

(4.1)

Since the total amount of the kinase A is constant, the rate of change of A+ AP should

be zero. It can be seen from these equations that this will only occur if either α and β are
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zero, or A
AP = β

α
. However, the steady state values of A and AP are already fixed by the

equilibrium ratio of the first step in the cascade. Therefore, for general perturbations α and

β the quantity A + AP will change over time, violating conservation laws. This example

consists of a kinase cascade because it shows how the divergence problem clearly violates

conservation laws, but this phenomenon actually applies to all networks that reach a steady

state, regardless of whether conserved quantities exist in the network or not.

To address this problem, the cytomorphic chip is designed to operate on conserved quan-

tities of the system. In the example in Figure 4.1, the conserved quantites are A+AP = Atot

and B + BP = Btot. The system can be described using a pair of differential equations

corresponding to AP and BP :

dAP

dt
= k′fA

Atot − AP

1 + (Atot − AP )
− k′rAAP

dBP

dt
= k′fB

Btot −BP

1 + (Btot −BP )
− k′rBBP

A = Atot − AP

A = Btot −BP

(4.2)

4.3 Chip Layout

This section briefly reviews the layout and specifications of the cytomorphic chip. A more

complete description of the hardware can be found in [325].

Figure 4.2 depicts the layout of the cytomorphic chip. The chip is composed of 20 blocks,

each designed to solve a single biochemical reaction of the form:

A+B C +D

where the rate of this reaction is kf ∗ A ∗ B − kr ∗ C ∗ D. In practice, modelers are

accustomed to working with more complex reactions with lumped kinetic expressions such

as Michaelis–Menten kinetics. However, physical processes at the molecular level invariably
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Figure 4.1: Demonstration of the divergence problem. In the phosphorylation cascade

in (A), the quantities A + AP and B + BP should be constant in time. However, letting

k′fA = kfA+α and k′rA = krA−α results in the loss of this conservation relationship, as shown

by the value of AP in the numerical integration of this ODE system (B), which exceeds the

total starting amount of A+AP = 1. This phenomenon also applies to networks that do not

have conserved quantities, as any steady–state value will tend to drift over time. Using the

total quantity representation of eq (4.2), this problem can be eliminated (C).
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Figure 4.2: Layout of the cytomorphic chip. The chip is compsed of 4 groups of 5 blocks

each of reaction units (see Figure 4.3). The routing bus allows the reaction units to be

programmatically connect to DAC (for input) and ADCs (for output) and also allows for

arbitrary connections between different reaction units.

fall into this binary mass–action category. In protein complex formation, subunits are added

one–at–a–time, and in enzyme catalysis, substrates bind the enzyme in an intermediate state.

Lumped kinetic expressions can be used with the hardware as shown later.

4.4 Methods

Figure 4.4 shows a high–level overview of the compiler. The compiler accepts as input a

SBML [165] model parsed using JSBML [165, 82], or an Antimony file [281], which is a

human–readable format directly interconvertible with SBML. SBML containing arbitrary
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Figure 4.3: Block diagram of a reaction unit. Each reaction unit accepts as input Atot and

Btot values for the two reactants and calculates the rate of change of the output C according

to equation 4.3 (in the default switch configuration shown here). There are 7 switches that

control the behavior of the block. The FF EN switches are used in the fan–in configuration

to enable computation of separate back–fluxes per branch. The section on building blocks

describes this setup in more detail. The switches A FB EN and B FB EN are used to control

substrate depletion. In the default configuration shown here, substrate depletion does occur.

In the inverted configuration, the reaction does not consume A or B (biological examples

of this include transcription and translation). Finally, the Ctot in switch controls whether

C|tot is computed by the block (default) are specified by an external source (also used in the

fan–in configuration). Each chip contains 20 such blocks.
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rate laws cannot be run on the cytomorphic hardware. The compiler uses a method of

“expanding” lumped kinetic expressions such as Michaelis–Menten, Botts–Morales, and re-

pressor binding kinetics that allows networks using these formulations to be compiled onto

the hardware.

The output of the cytomorphic compiler is two files: configuration of the shift registers

(which specify the parameters of each block), and the SRAM (which specifies connections

between blocks). Each of these file types is covered below.

Terminology & Validation Methods

Table 4.1 lists definitions for terminology used in this chapter.

In addition to producing programming files for the cytomorphic hardware, the cytomor-

phic compiler produces two other types of output that can be used to validate the compiler:

(1) A Simulink model containing the blocks, parameters, and connections produced by the

compiler, or (2) a differential equation system called a block simulation based on the block

diagram of Figure 4.2B. Either of these outputs can be used to simulate the circuit behavior

over time, similar to the SPICE analog circuit simulator [26] used in circuit design, except

that the simulations are transfer function–based (i.e. they are based on the block diagram

of Figure 4.2B, which uses gains, multipliers, and summation blocks for each stage instead

of individual circuit components). In fact, these two formats are numerically equivalent, but

serve different use cases. Simulink diagrams are used to visualize the block wiring, whereas

block simulations are used to plot and compare compiler output in Jupyter notebooks. In the

case of mass–action networks, the block simulation should correspond exactly to the SBML

simulation. However, the underlying differential equations in the block simulation are based

on total quantities, whereas SBML uses free quantities.

For validating the output of the compiler, block simulations are a primary source of

quantitative comparison. The block simulation should match the SBML simulation out-

put exactly for mass–action networks, and approximately for lumped kinetics expressions.

Hardware simulations are also shown where available. However, these cannot be used for
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Input SBML

Bimolecular Mass 
Action Network

Expansion of Lumped 
Kinetics

Block & Wiring 
Configuration

Encode reactions as 
blocks in chip

Shift Register Values 
(Parameters)

SRAM Connections 
(Network Connectivity)

Figure 4.4: A flow diagram for the cytomorphic compiler. The compiler processes the

input SBML model to “expand” (see below) lumped kinetic expressions into constituent

bimolecular elementary processes. Elementary reactions are then mapped to blocks on the

chip (sometimes to multiple blocks, as in fan–out reactions described below). Each block is

assigned parameter values based on the forward and reverse rate constants of its respective

reaction, and potentially degradation of the product. Blocks are connected together based

on the topology of the reaction network, but care must be taken to maintain a single “total”

value for each species, as described in the “Network Motifs” section. The final output of the

compiler is a configuration for the shift registers (which store parameter values) for all used

blocks and SRAM (which connects block input and output ports).
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Table 4.1: Cytomorphic terminology used in this chapter.

Term Description

Cytomorphic Chip A single chip with 20 reaction blocks.

Antimony A human–readable and writable representation of SBML.

Block simulation A circuit–level simulation (performed on a computer) of a specific

configuration of the cytomorphic chip (including parameters and

connections). This simulation is based on the ODE model of Figure

4.3, which shows the transfer function for every component in the

block. A block simulation can be performed using either Simulink

or libroadrunner [283]. In either case, the files to run the block

simulation are generated by the compiler.

Kinetic

expansion

Classical enzyme kinetics like the Michaelis–Menten rate law are

based on lumped processes. A Michaelis–Menten process represents

substrate binding and catalysis in one step but these are mechanis-

tically two separate processes. The cytomorphic compiler breaks

these lumped expressions down into their constituent components,

using lumped constants such as the Michaelis constant KM to de-

termine rate constants.

Archetype We use this term to denote the canonical form of a rate law expres-

sion such as the Michaelis–Menten formula VmaxS
KM+S

. See the section

“Matching Algorithm for Lumped Kinetics” below.
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quantitative comparison due to manufacturing variations and the fact that the block simu-

lation does not take into account the component–level capacitance of the block integrator,

or the analog–to–digital converter (ADC) clockspeed of the cytomorphic hardware. Nev-

ertheless, the shapes of the waveforms match closely, as can be seen from the repressilator

example below.

4.5 Shift Registers & Block Parameters

For the default configuration of the FF EN sw switches in Figure 4.2B, it is apparent that the

rate of production of the block’s main product, C, is given by:

dC

dt
= kr

(
(Atot − Ctot · AFB EN)

(
Btot − Ctot ·BFB EN

KDfw

)n
+ Cprod

)
−
(
CfreeDfree

KDrv

)
−Kdeg (Cfree(ratC) + Cdeg)

(4.3)

The forward and reverse rates for each block are determined by a combination of kr

and either KDfw or KDrv. Examining the equation shows that the forward and reverse

rate constants are given by kr
KDfw

and kr
KDrv

respectively. Thus, the forward and reverse

dissociation constants can be used to tune the relative forward and reverse rates, whereas

the overall reaction rate of all blocks in the network can be tuned by changing the kr value.

Also, any block that produces a species can also serve as a degradation reaction by utilizing

ratC.

4.6 SRAM & Network Motifs

The chip’s SRAM is used to program connections between the input and output ports of the

blocks. The input and output ports for each block are shown in Figure 4.5.

The method for connecting input and output ports is best illustrated with a series of

examples. This section shows a series of motifs that, taken together, form a basis for most

larger reaction networks. For cytomorphic hardware, which relies on total quantities, the

two most important and most challenging cases are “fan–in” and “fan–out” configurations,
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Figure 4.5: Input and output ports for the cytomorphic block. The two main inputs Atot

and Btot are used to compute the forward rate. Internally, the block subtracts its own Ctot

value from Atot and Btot to compute Afree and Bfree (see Figure 4.2B). The chip’s main

output is Ctot. If there is another reaction that consumes C, then Ctot should be connected

to the Atot or Btot input of the consumer block. Otherwise, Ctot should be connected to the

block’s own Cfree input to allow calculating the reverse rate. If the reaction is reversible,

Dfree may also receive input from another block or be simply wired to unity in the case of

a single product C. Other ports describing the blocks forward and reverse rates are used in

in certain motifs described below. The chip has 2 copies of Afree, Bfree, fw up, rv up, and

5 copies of Ctot (2 negative and 3 positive). In addition, the chip also copies the values of

its Cfree and Dfree inputs to the Cfree cp and Dfree cp output ports respectively. These

copies are used to route the input values to additional blocks in fan–in configurations (see

below).
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where a single species is produced or consumed by multiple reactions respectively. These

cases require careful accounting to ensure that the total quantities are properly handled. In

what follows, species names such as S, T , etc. are used to distinguish species in the network

from the port names on the block (A, B, C, and D). Figs 4.6–4.9 show the different motifs

used to validate the compiler.

4.7 Lumped Kinetics

The term “lumped kinetics,” as used here, refers to any kind of process in a model that

represents multiple elementary steps, where an elementary step is defined as a bimolecular

mass action reaction (e.g. substrate binding / unbinding, or the catalytic step in enzyme

catalysis). A common instance of this is enzyme kinetics: E+S ES E+P , which

represents an enzyme E that converts substrate E into product P . These reactions occur at

the following rates:

E + S ES, kfE · S − krES

ES E + P, kcatES
(4.4)

The individual forward and reverse rate constants of the binding step are difficult to mea-

sure directly, so these two processes are usually condensed into a single process by assuming

either rapid equilibrium of the binding process (which leads to the well–known Michaelis–

Menten kinetics [200]) or by assuming the enzyme–substrate complex is at steady–state

(Briggs–Haldane kinetics [54]). In either case, the rate law for the resulting lumped process

can be expressed as:

kcatE
S

KM + S

where KM = kr+kcat
kf

for Briggs–Haldane kinetics or kr/kf for Michaelis–Menten kinetics.

Our general approach to simulating these lumped expressions on the cytomorphic chip

is to break them down into the constituent steps of eq 4.4. However, this re-creates the
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Figure 4.6: A three–step feed–forward network. This network is comprised of a linear chain
of unimolecular mass–action processes (A). To convert this network to a wiring, blocks 1–3
are designated as the main producer of species S, T , and U respectively. Block 1 produces
S, hence its main output port Ctot is connected to the Atot input of block 2 and so on. This
signal is summed with the initial value of T (if non–zero). Since the cytomorphic chip uses
currents for computation, summing signals is achieved simply by connecting multiple signals
to the same input port. The last block in the chain, which produces U , also serves as a

degradation reaction U
kd ∅ . The block has its ratC parameter set to the degradation

rate kd. Additionally, the amount of U degraded must also be subtracted from the total values
of S and T . The rv up port computes the total loss in C for each block and is propagated
to the block immediately upstream by connecting to the Cdeg port. The Antimony/SBML
model for this motif (B) is converted to a block simulation that gives identical output to
the SBML simulation (C). Since this is a mass–action network, numerical differences can be
made arbitrarily small by adjusting integrator tolerances. All connections created by the
compiler are shown in the wiring diagram (D).
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Figure 4.7: A “fan–out” reaction occurs when multiple reactions consume the same reactant
(S in this case). In such a case, the blocks are termed a consumer group. One of these blocks
will compute Sfree by subtracting its own Ctot value. This Sfree value is then connected to
the Atot input for the second block. In addition, the second block also subtracts its own Ctot
value from the input value of S (via routing from one of the inverted output ports for Ctot).
Thus, the computed value Sfree is equal to Stot minus Utot (due to the feedback within the
first block) and minus Vtot (due to the extra Ctot connection).
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Figure 4.8: A dissociation reaction. A single block only contains a single integrator circuit,

which is used to compute its main output Ctot. When multiple outputs are present, they can,

in general, possess different degradation rates and be produced and consumed by different

sets of reactions. In order to account for this, the cytomorphic compiler creates two blocks

for each dissociation reaction. The first block computes Ttot and sends its forward and reverse

rates to the Cprod and Cdeg ports of the second block, which computes Utot. The second

block uses the forward and reverse rates to compute the change in Utot according to eq. 4.3

with Atot = Btot = 0. The production of Utot will thus be the same as Ttot except each block

may have a different degradation constant ratC and may be independently connected to

other blocks that produce / consume either of the products.
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Figure 4.9: A “fan–in” reaction occurs when multiple reactions produce the same species U .
In such a case, the blocks are called a producer group. Since the cytomorphic chip uses “total”
quantities for computations, these different sources for U need to be summed together to
provide a single value for Utot. This is accomplished as follows: (1) designate a single block
as the “main” producer of U . Other blocks that produce U will send their forward and
reverse rates rate fw and rate rv to the main block’s Cprod and Cdeg ports resp. In turn,
the main block sends its own computed value of Utot as well as the total forward and reverse
rates for U to all other blocks in the producer group via fw tot and rv tot. Finally, when
U is removed from the system, the total values of its upstream nodes S and T must be
adjusted accordingly. Internally, all non–main blocks in the producer group compute the
total production and consumption of U and subtract their individual contributions to this
amount (via inverting the FF EN sw switches in Figure 4.2B). This left–over amount is the
amount by which the total value of the upstream nodes S and T changes as a result of
external sources of U . This scheme, while complicated, allows total quantities for all species
to be computed.
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problem of determining the forward and reverse rate constants kf and kr respectively. From

the lumped expression, we can determine kcat and KM . However, we need one additional

constraint to specify both kf and kr. This constraint comes from the upper limit of the

chip’s simulation speed.

Consider the block diagram of a reaction unit containing a negitive feedback loop around

the part of the circuit that processes A as highlighted in Figure 4.10. In designing electronic

amplifiers, it is common to account for the so–called phase margin. In an amplifier circuit

as well as in the highlighted feedback loop, there exists the possibility that the output

signal can be 180◦ out–of–phase with the input. Since the feedback is negative, the signal

will be inverted and cause constructive interference with the input, leading to instability.

Furthermore, this feedback loop also possesses a parasitic pole due to the current mirror

that produces the Afree signal. Taken together, these conditions lead to the stability rule

[323]:

Btot

KDfw

r

C
<
Afree
Cpar

where Cpar is the parasitic capacitance at the gate node of the Afree current mirror,

C = 0.1µF is the capacitance of the integrator capacitor, and r is the overall rate of the

block (used as a scaling factor for both the forward and reverse rates). In the preceding

expression, we assumed that Afree < Btot. The roles of A and B can be reversed if this is

not the case. This equation can be simplified to:

kf <
Afree
Btot

C

Cpar
= ρ (4.5)

This gives an upper bound for the value of kf based on the global value C
Cpar

and the local

value
Afree

Btot
which depends on the reaction and simulation conditions. These two values can be

condensed into a single constant ρ, called as the margin, which in general varies per reaction.

Several more examples of lumped expressions are considered in this chapter that expand into
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Figure 4.10: Negative feedback around the circuit for A.

elementary processes that occur at rate ρ. In practice, we can assume a reasonable lower

bound for ρ and refine the estimate after simulating the network. If we assume Cpar = 1pF ,

this gives an upper–bound of 105Afree

Btot
. The value of

Afree

Btot
is model and simulation–dependent,

but by assuming a reasonable upper bound of 100, we obtain ρ = 1000. This value can be

used to run digital simulations for a given hardware configuration which in turn can be used

to refine the value ρ.

Returning to enzyme kinetics, the higher the value we choose for kf (and hence kr),

the more rapid the enzyme–substrate binding. Since Michaelis–Menten kinetics are derived

based on an equilibrium assumption, a larger kf will tend to make this assumption more

valid. Therefore, choosing kf ≈ min
(
Afree

Btot

)
C

Cpar
= ρ yields the best approximation to

Michaelis–Menten kinetics without causing instability.

Figure 4.11 shows the result of plotting the dynamics of the elementary binding / catalysis

network versus the original Michaelis–Menten lumped single–process network for various



www.manaraa.com

125

0

2

4

6

8

10

co
nc

. (
a.

u.
)

Lumped Kinetics /kcat = 0.01 /kcat = 0.1

0 20 40 60 80 100
time (a.u.)

0

2

4

6

8

10

co
nc

. (
a.

u.
)

/kcat = 1.0

0 20 40 60 80 100
time (a.u.)

/kcat = 10.0

0 20 40 60 80 100
time (a.u.)

/kcat = 100.0

S (lumped)
S
P (lumped)
P

Figure 4.11: Different margin values and their respective simulations. In these simulations,

E = 1, Sinitial = 10, kcat = 1, and KM = 10. For the elementary two–process network, the

reverse binding rate is calculated automatically by the compiler using the supplied value of

ρ as kr = ρKM − kcat if kcat
kr
� 1 or kr = ρKM otherwise.

values of ρ.

It is worth observing that, from a design standpoint, our compiler uses the two–step net-

work to “approximate” models with lumped processes such as Michaelis–Menten kinetics.

However, from a mechanistic standpoint, Michaelis–Menten kinetics represents an approxi-

mation of the corresponding physical two–step process. In effect, this line of reasoning has

taken us full-circle from a mechanistic representation to a lumped process and back again.

However, for the purpose of practical modeling, this is a necessary detour, since it is feasible

to measure the KM and Vmax values for enzymes, but in general it is not possible to measure
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binding apart from catalysis (i.e. the parameters kf , kr, and kcat).

The meaning of this observation is that while elementary, mass–action processes are

biologically accurate, they are not feasible from a modeling standpoint. Thus, modelers

should continue to use kinetics that can be parameterized with quantifiable parameters,

while specialized hardware should continue to use elementary processes that are conducive to

efficient implementation. Breaking–down these high–level expressions into low–level expres-

sions (hereafter referred to as “expansion”) is one of the main functions of the cytomorphic

compiler.

A limitation of this “expansion” method is that when the substrate is not in excess of

the enzyme (i.e. E � S does not hold), then there is significant deviation between the two–

step mechanistic process and the idealized Michaelis–Menten approximation (the mechanistic

process will tend to lag behind the lumped process), regardless of the value of ρ. However,

Michaelis–Menten kinetics also reilies on the assumption that E � S, and thus would be a

physically inaccurate modeling assumption in this case.

Matching Algorithm for Lumped Kinetics

In order to successfully expand lumped kinetic expressions into constituent components, it is

necessary to (1) identify, from the rate law, what type of lumped expression is represented,

and (2), obtain the values of all lumped constants and use these to compute the individual

rate constants.

One approach to solving (1) would be to simpify and canonicalize the rate law expres-

sion and compare this simplified version with each known kinetic expression on a tree–

basis (canonical expressions like the Michaelis–Menten formula VmaxS
KM+S

are referred to as

“archetypes”). However, this approach is sensitive to different factorizations of the expres-

sion and requires that all archetypes also be in canonical form. Instead, the compiler uses an

algorithm for determining the equivalence of expressions based on hash–coding [184]. This

algorithm is computationally efficient and maps algebraic expressions into finite rings.

In the compiler implementation, additional simplifications are used to further increase
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the performance. The algorithm is split into two stages. The first stage assigns numerical

values to all substrates and products in an expression, and unity to all other symbols. In

principle, this introduces ambiguity. However, the compiler requires classifying biochemical

rate laws, and no two rate laws are identical up to arbitrary constants. Thus, it is safe to

discard constant values at this stage. The output of the first stage is the matched archetype

along with the positions of the substrates and products in the expression. In the second

stage, rate laws are matched constants one–by–one. This allows us, for example, to match

the Michaelis constant KM . For each constant, a numeric value is assigned, setting all other

constants to unity. The assigned constant, as well as all substrates and products, must be

relatively prime. If the computed hash code matches the reference expression, the value of

the SBML parameter is assigned to the current constant.

The procedure for the algorithm is described in pseudocode in Figure 4.12.

4.8 Compiling Gene Regulatory Kinetics

Another major type of lumped kinetics occurs in models of gene regulatory networks. Con-

sider the LacI repressor, which controls expression of the lac operon (lacO) in bacteria.

The LacI repressor is a homotetramer, but might be better described as a dimer of dimers.

Each dimer subunit contains a DNA–binding site for lacO. The repressor binds to lacO as a

two–step processes. Binding of allolactose to LacI causes the repressor to enter an inactive

state P (protruded) with decreased overall affinity, releasing the operator site. Using lumped

kinetics, the transcription rate of the operator is given by [88, 260]:

ν = α0 + α
K2
m

K2
m +R2

where ν is the transcription rate, α is an experimentally determined rate constant, Km

is the equivalent equilibrium constant of the two binding steps, R is the concentration of the

active repressor, and α0 is the basal level of transcription under fully repressed conditions

(the “leakage” rate).
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# stage 1: match the archetype

given an input expression e

for a in archetypes

for symbol s in e

# map all symbols to a prime number if it is a substrate/product, 1 otherwise

s -> prime() if s is in [substrates,products,modifiers]; 1 otherwise

if hash(e,s) = hash(a,s)

# if the hash matches the archetype, return the archetype and matched symbols

return a, symbols in e

# stage 2: map all constants

given an input expression e, archetype a, and symbols from stage 1

for symbol s in a

if s is not mapped

# map the constants to primes one-at-a-time

s -> prime()

for SBML param p in e

# get a trial parameter and map it to the same value as s

p -> value(s)

if hash(e,s+p) = hash(a,s)

assign SBML initial value of p to the symbol s

Figure 4.12: Pseudocode for the Martin matching algorithm.
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In order to expand this process to a simulatable form, we could decompose binding into

a two–step process. However, the cytomorphic chip provides a Hill function that allows this

two–step process to be modeled as a single step (labelled n in Figure 4.2). Using the Hill

function, we could write the overall binding process as:

R +O B, k2
fR

2O − krB

where R is the active repressor, O is the operator site, and B is the bound (repressed)

complex. Transcription can then be modeled as a simple first–order process without sub-

strate depletion (both the A FB EN and B FB EN in 4.2 should be off). This expanded model

exhibits a time delay proportional to τ = kr+ (kf ·R)2 compared to the lumped expression,

which assumes rapid equilibrium of the binding process. Our approach to minimizing this

discrepancy is the same as in the enzyme kinetics case – we maximize the forward rate con-

stant kf subject to the margin ρ defined in eq 4.5. The expanded model can reproduce the

dynamics of complex networks to a high degree of accuracy, as shown below.

In a highly influential study in 2000, Elowitz et al. showed that a genetic oscillator

(the “repressilator”) can be constructed from three genetic repressors [88]. To validate the

cytomorphic compiler’s ability to translate repressor kinetics, a dynamical model of the

repressilator from the BioModels database was used as a starting point [164, 89]. This

model contains a total of 12 reactions, half of which are degradation reactions. To reduce

the number of blocks required to encode the model, the degradation reactions were condensed

into the production rate laws for the three genes and proteins in the system:

∅ X, α0 + α
K2
m

K2
m +R2

− kd1X (4.6)

∅ PX , ktX − kd2PX (4.7)

and similarly for Y and Z. The parameter values were adjusted to comply with the

acceptable current ranges for the chip.
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Figure 4.13: Wiring diagram of the repressilator model. To validate the cytomorphic com-

piler output for repressor kinetics, an SBML model containing six transcription / translation

/ degradation reactions was used (see eq 4.7). The compiler transformed this SBML model

into a block configuration containing nine blocks (A). Each transcription reaction is ex-

panded to repressor binding (first column) and transcription (second column), whereas each

translation / degradation reaction is represented by a single block (third column). A digital

simulation of this block configuration is shown in Figure 4.14B.



www.manaraa.com

131

A

B

C

2 3 4 5 6 7 8 9 10

time ratio (digital/analog)

0.4

0.5

0.6

0.7

0.8

0.9

M
ax

 r
el

. c
or

r.

Digital/Analog Correlation

X
Y
Z
PX
PY
PZ D

Figure 4.14: Comparison of repressilator model simulations. Also shown is an SBML
simulation of the original model (B), a block simulation (C), and data collected from the
cytomorphic chip (D). Due to manufacturing variations, blocks in the cytomorphic chip have
different gains, hence the peak heights are different. The time axis on the chip data plot
corresponds to “simulation time,” i.e. the actual duration of running the simulation, as
opposed to “model time”, the time according to the dynamics of the model. To be useful,
a hardware simulation should take less time to run than the timescale according to the
model’s dynamics. This allows for multiple in silico expriments to be performed in for the
amount of time a single physical experiment would take. To quantify this ratio, we performed
correlation analysis on the chip data against the block simulation based on the wiring on
Figure 4.13 (D). The cross correlation shows a peak at 6.5 seconds, indicating a six–fold
difference between model and simulation time. This does not represent a speedup over a
software SBML simulation, but the cytomorphic chip exhibits constant scaling up to the
maximum number of blocks.
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4.9 Higher–Order Compilation

While the requirement that all processes in a model be reducible to mass–action kinetics

may seen restrictive, there is a very large class of models that consist only of this type

of process. The field of rule–based modeling is a very active area of research (see [68] for a

review). Rule–based models are composed of multi–state species. For example, a protein can

have multiple phosphorylation sites, and each site can exist in either a “phosphorylated” or

“unphosphorylated” state. These rules can be used to generate a network of all enumerable

molecular states, or alternately simulated stochastically without enumeration using agent–

like methods such those employed by the simulator NFSim [282].

Rule–based models invariably generate mass–action networks when enumerated or other-

wise reduced to a simulatable form (this is not strictly a requirement, but non–mass action

networks are a rare use–case for rule–based modeling and are not considered here). Further-

more, whereas NFSim scales linearly with the number of rules [282], the cytomorphic chip

has constant scaling up to the maximum number of blocks (with the ability to connect to

additional chips and thus increase the maximum network size in the future).

Taken together, these factors suggest that the ideal application of cytomorphic hardware

could be the simulation of rule–based mass–action networks. A model of a MAPK signaling

cascade from the rule–based modeling platform PySB [176] and based on a previous study

[64] was used to validate the cytomorphic compiler. This cascade consists of the MAPK

ERK and its upstream activators Ras and Raf. A contact map for this model, generated

using RuleBender [280], is shown in Figure 4.15.

Rule–based models are one approach to managing complexity. They allow the user to

specify models in terms of biomolecules with multiple states (such as multiple phosphoryla-

tion sites and multiple binding sites that can either be occupied or not) and automatically

enumerate all possible discrete states. Similarly, electronics designers have long used similar

bookkeeping technologies (very large scale integration, or VLSI) to generate chip layouts

from high–level logic specifications. Just as VLSI was a necessary technology for enabling



www.manaraa.com

133

A

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block1

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block2

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block3

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block4

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block5

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block6

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block7

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block8

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block9

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block10

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block11

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block12

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block13

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block14

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block15

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block16

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block17

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block18

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block19

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block20

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block21

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block22

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block23

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block24

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block25

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block26

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block27

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block28

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block29

Atot(0)

Btot(1)

Cfree(2)

Dfree(3)

Cdeg(4)

Cprod(5)

Ctot_in(6)

Afree(12)

Afree(13)

Bfree(14)

Bfree(15)

rate_fw(16)

fw_tot(18)

fw_up(20)

fw_up(21)

Ctot-(7)

Ctot-(8)

Ctot+(9)

Ctot+(10)

Ctot+(11)

rate_rv(17)

rv_tot(19)

rv_up(22)

rv_up(23)

Cfree_cp(24)

Dfree_cp(25)

block30

block1_Atot

block1_Btot

block1_Dfree

block2_Atot

block2_Btot block3_Btot

block4_Atot

block4_Btot

block4_Dfree

block5_Atot

block5_Dfree

block6_Atot

block6_Btot block7_Btot

block8_Atot

block8_Btot

block9_Btot block10_Btot

block10_Dfree block11_Dfree

block12_Atot

block12_Btot block13_Btot

block14_Atot

block14_Btot block15_Btot block16_Btot

block16_Dfree

block17_Atot

block17_Dfree

block18_Atot

block18_Btot block19_Btot

block20_Atot

block20_Btot block21_Btot

block22_Atot

block22_Btot

block22_Dfree block23_Dfree

block24_Atot

block24_Btot

block25_Btot

block26_Atot

block26_Btot block27_Btot block28_Btot

block28_Dfree

block29_Atot

block29_Btot block30_Btot

outputscope

B

C D

Figure 4.15: A rule–based MAP kinase model [176, 64] and its corresponding block config-
uration produced by the cytomorphic compiler. (A) A contact map for the kinase cascade
generated using RuleBender [280]. The contact map shows the molecular species present
in the model — Ras, Raf, MAPK/ERK Kinase (MEK), extracellular signal-regulated ki-
nase (ERK), MAP kinase phosphatase (MKP), and Protein phosphatase 2 (PP2A). When
expanded to an SBML mass–action network representation, this rule–based model expands
into a network with 20 reactions and 21 distinct dynamical states. (B) The block layout of
the PySB kinase cascade model compiled for the cytomorphic chip showing 30 blocks repre-
senting the 20 SBML reactions. This diagram is a Simulink model generated automatically
by the compiler for validating the output. An SBML simulation of the flattened rule–based
model (C) and a block simulation (D) are identical up to 3 significant figures (simulated
using libRoadRunner, CVODES solver, absolute and relative tolerances 10−20 and 10−12

respectively.
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rapid growth in complexity of integrated circuits (ICs), technologies such as the cytomorphic

compiler presented here will be necessary for rapid growth of biomimetic electronics.
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Table 4.2: Tunable Parameters for Each Block.

Parameter Description

ratC Controls the degradation rate of the main product C when this

block also serves as a degradation reaction.

n Hill coefficient for forward binding. Useful in repressor kinetics.

KDfw Forward–binding dissociation constant. Used to specify the forward

rate via eq. 4.3.

KDrv Reverse–binding dissociation constant. Used to specify the forward

rate via eq. 4.3.

kr The overall rate of the block. Can be used to tune the forward and

reverse rates simultaneously (trading speed for stability or vice–

versa).

kdeg Auxiliary degradation rate used in the fan–in configuration.

A FB EN,B FB EN Substrate depletion switches for reactants A and B respectively.

When turned off, product of C does not consume A or B resp.

(useful for modeling transcription and translation reactions).

FF EN sw1,2,3,4 Switches controlling the internal forward–reverse rate computation

of the block. Only used in fan–in configurations, which each block

must subtract the “main” production rate from its own rate.

Ctot sw A switch controlling whether the block’s main output Ctot is sup-

plied externally (not used in most configurations).

Programmable parameters for each cytomorphic block.
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Chapter 5

CONCLUSION

5.1 Contributions to Standards Integration

In order to build larger, more complete, and more accurate dynamical models of cells and

tissues, it will be necessary to reuse models of subsystems. This is currently very difficult

due to the time–consuming and laborious process of manually reconstructing models from

literature, or manually verifying third–party SBML models. Standards for encoding models

exist, but they require considerable technical knowledge to use, thus causing many researchers

to opt for a simpler, non–reproducible approach.

One contribution of this thesis is a platform that allows researchers to encode models using

standard formats without requiring specialized knowledge of standards, thereby providing

reproducibility benefits for the systems biology community. Tellurium also supports many

other features — an integrated simulation engine and plotting facilities, bifurcation diagrams,

and more, but the main benefit of the contributions described here is the integration of

standards in a notebook environment.

Tellurium notebooks provide support for encapsulating both a model and its dynamics in

a community–developed standard format, the COMBINE archive. This archive can contain

the model as well as a number of simulations which test various dynamical properties of the

model. Tellurium allows users to create COMBINE archives easily from SBML models, or

import and modify preexisting COMBINE archives.

Tellurium integrates SBML, SED–ML, and COMBINE archives within a notebook envi-

ronment, making it exceptionally easy for users to work with these standards, and obviating

the need for users to understand the technical specifications of the standards. The avail-

ability of authoring tools such as Tellurium will make it possible for model repositories to
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begin implementing support for SED–ML and COMBINE archives. Indeed, the JWS On-

line repository [229, 219] already has support for exporting COMBINE archives of models

and simulations, which can be read by Tellurium. Other databases will hopefully follow

suit so that it will be possible to automatically extract dynamical information from these

repositories.

Tellurium’s human–readable representation of COMBINE archives is highly important for

facilitating model modification as described in this section. This feature enables researchers

to experiment with models using alternate parameterizations in order to test the dynamical

behavior of the models under varying conditions. This may lead to more robust models which

lead to biological insight by providing predictions under a wide range of circumstances, as

with the case studies presented in Chapter 2.

5.2 Contributions to Web–based Support for Standards

In order to support online repositories and modeling tools, better web–based support for

standards is needed. Currently, there is no web–capable library that can read and write

SBML models. Chapter 2 introduced libsbmljs, a WebAssembly / JavaScript library that can

read and write all SBML packages. Tutorials, examples and extensive API documentation

for potential users are all provided. A modular build system is also provided that can be used

to regenerate the wrapper from any recent checkout of the libSBML C++ library from the

stable or experimental branch, as well as in–browser tests of the wrapper using the Karma

testing engine. This wrapper will hopefully enable the development of systems biology web

applications and services that can use the SBML standard.

5.3 Contributions to Scalable Kinetic Modeling

Model calibration is often a major bottleneck in constructing dynamical models. The ability

to accelerate this process would allow modelers more freedom to experiment with different

model variants, and shorten the overall length of model development. We have shown here

that the asynchronous, distributed island method yields accelerated convergence and better
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quality of fit for very large, challenging optimization problems in systems biology.

However, the island method introduces new tunable hyperparameters, such as the migra-

tion topology, local algorithms for each island, and others. This can make using the island

method difficult in practice. In our tests, topology and algorithm choice only exhibited a

minor role in determining performance. Thus, the island method is useful as a general par-

allelization scheme without the need to tune these hyperparameters. Our tests indicate that

the top–performing combination consisting of the de1220 algorithm with the rim topology

exhibits good general performance and scalability and should be sufficient for most users.

Users can scale this combination by setting the number of islands equal to the total number

of CPU cores in the cluster.

5.4 Contributions to Simulation Technology

Biomimetic special–purpose hardware utilizing analog computing has shown great promise

for simulating chemical reaction networks more efficiently and (with a high–yield industrial

manufacturing process1) faster than digital computers. This thesis described a compiler

to convert from SBML models to a configuration for running simulations on specialized

hardware.

This compiler forms a bridge between standard–encoded models and special purpose

hardware. Previously, models had to be manually translated by an expert in both the hard-

ware and SBML models, a laborious and time–consuming process. The significance of this

contribution is that brings this specialized simulation method closer to practical realization

by providing an automatic pathway for this translation process. It also enables scalability

1The prototype cytomorphic hardware is currently produced using a 130 nm process. Each reaction
block in the chip uses fewer than 100 transistors and is more than 1000 times more energy efficient
than a workstation computer. Modern ICs typically contain hundreds of millions of transistors. Thus,
if commercialized using industry–standard manufacturing, cytomorphic hardware could reach over one
million blocks per chip and an increase in simulation speed per block. This would allow the simulation of
networks of millions of reactions in the 1s time regime. By contrast, the libRoadRunner SBML simulator,
which attains near–optimal simulation speeds (as measured by comparing against manually written C++
model–specific code), requires ≈ 6s to simulate a Brusselator network of 2000 reactions on an Intel®

Core™i7 3770.
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to larger models. In the early years of computer science, it quickly became apparent that

assembly language was not a viable tool for building large–scale software systems, which lead

to the development of compilers for higher–level languages. This is also true for biochemical

models, where increasing size and complexity creates a limit to the size of models that can

be translated by hand. Cytomorphic compilers such as the archetypal implementation pre-

sented here are thus necessary for the continued development of cytomorphic hardware, and

indeed suggest routes of advancement for other biomimetic systems.

The compiler presented here solves two main problems in the translation process: prop-

agation of fluxes to avoid the divergence problem, and reduction of higher–order kinet-

ics. While the approach described here is not completely general, the current rate law

reductions cover a broad class of models and can, in principle, be extended to cover all

known lumped kinetics expressions. Furthermore, a large body of rule–based models exists

[68, 280, 43, 265, 45, 282, 176] that are already expressible in reduced mass–action form.
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Appendix A

LIST OF SOFTWARE PROJECTS

Listed project based on authorship or major contributions.

• Distributed island model fitter.

https://github.com/distrib-dyn-modeling/sabaody

• Cytomorphic compiler.

https://github.com/0u812/mtt

• Tellurium.

https://github.com/sys-bio/tellurium

• Tellurium examples.

https://github.com/sys-bio/tellurium-examples

• Tellurium notebook examples.

https://github.com/sys-bio/tellurium-notebooks

• libRoadRunner.

https://github.com/sys-bio/roadrunner

• Network layout tool.
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https://github.com/sys-bio/sbnw

• Python package from constructing SBML models.

https://github.com/sys-bio/simplesbml

• Package for converting from SBML models to Matlab.

https://github.com/sys-bio/sbml2matlab
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VITA

J Kyle Medley

Table A.1: Peer–reviewed First–author Publications

A compiler for biological networks on silicon chips . . . . In preparation.

Accelerated Biochemical Model Fitting via the Asyn-

chronous, Generalized Island Method . . . . . . . . . . . . . . . . .

In preparation.

libsbmljs — Enabling Web–Based SBML Tools . . . . . . . In preparation.

Tellurium notebooks — An environment for repro-

ducible dynamical modeling in systems biology . . . . . . .

Published (PLoS Comp

Biol. 2018) [196]

Guidelines for reproducibly building and simulating sys-

tems biology models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Published (IEEE Trans

Biomed Eng. 2016) [197]

Table A.2: Peer–reviewed Co–author Publications

Tellurium: An extensible Python-based modeling envi-

ronment for systems and synthetic biology . . . . . . . . . . . .

Published (Biosystems

2018) [66]

Synthetic Biology: Engineering Living Systems from

Biophysical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Published (Biophys J.

2017) [31]

libRoadRunner: a high performance SBML simulation

and analysis library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Published (Bioinformatics

2015) [283]
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Table A.3: Conference Talks

Bringing Combine Standards to the Literate

Notebook World. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMBINE 2018 http://co.mbine.org/

events/COMBINE_2018/agenda

Tellurium 2.0: Revamped Notebook Interface

& COMBINE Archive Support . . . . . . . . . . . . . .

Harmony 2017

High-performance Model Simulation with li-

bRoadRunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

COMBINE 2016 http://co.mbine.org/

events/COMBINE_2016/agenda

Table A.4: Posters

Building Reproducible Dynamical Models

with Tellurium 2.0: A Case Study . . . . . . . . . . .

IMAG 10th Anniversary Conference 2017

Distributed, Evolutionary Computing for Pa-

rameter Fitting of Stochastic Models . . . . . . . .

Beacon 2017

Building Hybrid/Hierarchical Models with

Tellurium and libRoadRunner . . . . . . . . . . . . . . .

Whole Cell Summer School 2016 http://www.

wholecell.org/v2/school-2016/

LibRoadRunner: High-Performance Time-

course Simulation and Model Fitting . . . . . . . .

COMBINE 2015

Tellurium : A Python Based Integrated Envi-

ronment for Systems Biology . . . . . . . . . . . . . . . .

Harmony 2015

http://co.mbine.org/events/COMBINE_2018/agenda
http://co.mbine.org/events/COMBINE_2018/agenda
http://co.mbine.org/events/COMBINE_2016/agenda
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Table A.5: Preprints (First / Coauthor)

libsbmljs — Enabling Web–Based SBML Tools . . . . . . . bioRxiv 2018

Tellurium notebooks — An environment for repro-

ducible dynamical modeling in systems biology . . . . . . .

bioRxiv 2017

A portable library to support the SBML Layout Exten-

sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bioRxiv 2016

SimpleSBML: A Python package for creating and edit-

ing SBML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bioRxiv 2016


